Automation & Testing Suite
for embedded software | AUTOSAR-compatible

ATS 5.2.0

Basic Usage Manual

SCHLEISSHEIMER SOFT- UND HARDWAREENTWICKLUNG GMBH

www.automation-testing-suite.com H.-1. SchieiBheimer

i i t- ured Harel
www.schleissheimer.com ot Horchuoss

2024

Contents

Chapter 1. Getting Startedccvivieeiecee e 3
I o (o [=To Aol 1= £ o] o SRS 4
1.2. Opening exXiSting PrOJECT........ccveiieiiriie e 11
1.3. REMOVING PrOJECT.....cciviiiieiiicie ettt 12
ST (Y [0 To [0] (0] =T SRS SR 13

Chapter 2. TeSting flleSco i s 15
2.1. BUIlAING SIMUDLLoviiiieie et 15
2.2. AAAING NEW TESTeeieeciie et 17
2.3. MOdIfYING @ tEST....eeiieiiice e 18

2.3. 1. SEOUEBNCES. .. .evieiiiiieiitieeeiree st e st e et e e sbae e e st e e s b e e e nnaeee e e 22
2.3.2. RANQE VAIUEBS ...t 23
2.3.3. SPECial OPEIaAtOrS.....ceiivecieccieecee e 24
2.3.4. StruCtS USAge IN LSSveiieecieeciee e 25
2.4, RUNNING TESTS ... eeitieitie et ee et sree e 27
2.4. 1. CNAITS ..eeeveiiie ettt nne s 30
2.4.2. MC/DC COVEIAQE .eevveiveeeieesieesiiesteeenieesieesieesieesnee e enteesseessee e 31
2.5, IMporting/exXporting teStSccvveiieiieiie e 36
2.6. Modifying SIMUDLL ProOjJECT......cccveiieiiiiie e 36

Chapter 3. Additional features of CPP TeStSccccovveviieeiiie e 38
3.1 ATS REPOIS.....eiiee it 39

Chapter 4. Code GENEIALONccvveieeriieiieesie et see e eeenns 40
4.1, SCrIPLS CONLIOL ...t s 40
4.2, FileS CONLIOL........ooiiiiei e 41

LISE OF FIQUIES ...t e e 44

Chapter 1. Getting started

In this chapter, you will be introduced with activating the license, creating
new project and opening the existing one (also from a different device), as well
as saving it.

First, run the application. On your screen, the License Tool window will
appear (Figure 1). You can import license by inputting the activation key (section
on the right side) or by using remote license parameters (on the left). After

successfully activating the license, application needs to be restarted.

Figure 1. License Tools

License Tools X

License List

Product name License key Type Support Basic Code Coverage Enabled in VM
ATS Basic(Local) 2 Perpetual

Refresh

Remcte License Search Parameters License Update

Input new activation key

|Brsrsese-sasr-reer-1ens |

Accept Cancel | Activate ‘

If you want to apply for a Demo license just fil in the request form on hitps: fvew.u

After restarting the application, you will need to select the particular
license, which you want to use. To do that, click it and then just click the button
,,oelect license”. Now, on your screen there will be showed a logging view. After
you log in, you can go further to Welcome Window (Figure 2).

Figure 2. Welcome Window

Welcome to Automation & Testing Suite

Load project from file

Create new project

Change license

Close

With this window, you are able to:

open selected project,

¢ |oad project from file — it allows to open a project by manual selecting a
particular .ats5prj file,

e create new project,

e remove selected project from list,

e remove missing project — it removes a project from ATS recent projects
list, that is not existing anymore on your computer (for example a project
that has been deleted),

e change license — it shows the License Tools

o close application.

1.1. Project creation

In the first step, select a place for your new project and type in the name.
It will be saved as .atsbprj file. After creating a project, this is how main view of

the application looks like (Figure 3).

Figure 3. Main View of ATS5.

@ &L oS M A B B Ik

Before you start having the files analyzed by ATS, please make sure, that
you have set a path to MSBuild and Cl.exe. To check this, go to Tools —
Configuration — Compilation tools, as showed on Figure 4. If the fields are empty,
use Suggest button to set them automatically. In case it does not happen

automatically, you will have to set it manually (choose a particular path to those

components or install them, if you have not done it yet).

Figure 4. Compilation Tools.

@ Configuration - Compilation tools

Compilation tools

~ Application
General
Appearance Cl.exe
Company

~ C++ Project
Project
Database
CTC
Reports
Requirements
Code Generator

MsBuild.exe C:/Program Files/Microsoft Visual Studio/2022 fCommunity MSBuild /CurrentBin/amd64/MSBuild.e e Suggest

C:/Program Files/Microsoft Visual Studio/2022 fCommunity /VC/ToolsMSVC /14, 33.31629 bin/Hos{ Suggest

Save configuration Cancel

Now, you can start analysing source files and creating tests. To choose files

for analysis, click the first left button on the Toolbar (or use CTRL + W keyboard
shortcut):
F

Figure 5. Importing files to CPP Tests.

& ATSS 4 & ATSS >
Import files for testing Import files for testing
Import: Visual Studio Solution/Project -
Path: {TS_CPPProjectTesting \ATS_CPPProjectTesting. sin o Impart: Source Files T
Import method: Replace existing stubs - Add files: Append new items to tree T
additional indudes path: a Import method: Replace existing stubs -7
select language standard: c++14 (default) - Additional indudes path: -
Requirements prefix |REQ INCLUDE| Select language standard: c++14 (default) -
Requirements prefix ‘REQ_INCLUDE|
Selected source files tree:
L
[
o
[
o
™ =
Next > Cancel

Cancel

It will display a dialog window with such features, as showed on Figure 5.
In here, you can select:

e away of importing files (by Visual Studio Solution/Project, by Project
Root Folder or by Source files),

e importing method (Replace existing stubs or Append to existing stubs),

¢ language standard,

e and also specify requirements prefix. Those requirements are
recognized from comments in loaded files and added to the list of
requirements (Fig. 6).

Figure 6. Requirements list.

Requirements list — O *
Include in rapert Requirement
v RECQ_INCLUDE1
v REC_INCLUDEZ2
REC_INCLUDE3
REC_INCLUDE4
«
v REC_INCLUDEG
v REC_INCLUDET
v REC_INCLUDES

Requirements can be also configured in Tools - Configuration —
Requirements (Fig. 7), where the prefix can be change or user can select/deselect

many requirements to add them (or not) to the analysis.

Figure 7. Requirements in Configuration.

Configuration - Requirements x
Type to find Requirements
™ Application Prefix of requirements |REQ_INCLUDE Requirements list
General
Compilation tools
Appearance
Company
* C++ Project
Project
Database
CTC

Reports

q
Code Generator

Save configuration Cancel

If there are requirements in the files and the prefix had been set, they will
be presented in Test Report in form of the table (Fig. 8).

Figure 8. Requirements Summary table.

addFloat_Test1

Result: Passec

Function Code
1 float ATS CppTestingPrj::addFloat(float a, float b)
3

3 return a + by REQ TESTS REQ_INCLUDEL
4
Ba @b mretRoy @retEr @ ErrorPoints W Axis Y M Axis X
32.00
24.00
16.00
8.00
0.00
0.0 2.0
Sequence step
Category Type Name
1 2
Parameter float a 1 2
Parameter float b 1" 2
Expected retum float - 22 4
Value retumed float - 22 4

Requirements Coverage

Requirements Summary table

Reguirement name Coverage (%) Test name Test status

REQ_INCLUDE1 _ 100.00% addFloat_Test1

Requirements can also be added (with button “+””) or removed (with button
“-) for a specific test (Fig. 9).

Figure 9. Tools for adding/removing requirements.

) o

Test Requirements. BE
ATS_CppTestingPrj : adduint : adduint_Test1 Sequence Length | 1 +|[- -
Hame Type Sequence Value REQ, INCLUDET
~ Inpuc arguments
a unsigned i..
b unsigned i
~ Expected return value
unsigned i +
~ Global Variables
Input
Expected value Global Variables [E]
~ User Variables
Tnput Type Name Value
Expected value 1 int globalVariable s
2/ long globalVariable2 2

3/double | globalVariable3

Removing causes that the given requirement will not be displayed in Test
Report and will be omitted in analysis. Adding is available when user want to add

existing requirement, which was removed or omitted.

Going back to the dialog of importing files to analyse, in here you can also
set the path for selected files (if the import way is Visual Studio Solution/Project
or Project Root Folder) or select a method for adding files (if the import way is
Source Files). The options for that last case are Append new items to tree,

Override all items in the tree.

Warning: since now, you are only able to parse files that are using basic

variable types. Any other types will cause and display errors.

To describe and clarify the ways of importing files, please get familiar with

this information:

¢ Visual Studio Solution/Project — it allows to choose .sIn or .vcxproj files,
so you can display files that are included in it.

e Project Root Folder — it allows to choose root folder from which files and
subfolders will be displayed for further analysis.

e Source Files — it allows to add source files which a user wants to have
displayed in tree section (right side of Figure 5). Adding source files is

available multiple times when ,,Add files ” option is selected.

Besides that, application allows to set additional includes path — it can be
done in two ways. The first method is to simply click the button on the right side
of the field and type in the paths, which you need. The second method is to click
the ,,...” button and select the output folders manually. By setting additional
includes path, you can specify paths to folders with files that are needed to be
included in analysis, and that are placed outside the project.

By going ,,Next”, the application would show a selection section (Figure
10). In here please choose files, using checkboxes, that you would like to have in

your project.

Figure 10. Selection section in CPP Tests.

& ATSS X
Select files
Select files
v [|E| -
> |
v [B1 ATS CinTests.h
v ATS_ClassDisabledConstructor.h
V| [ATS ClassDisabledConstructorWerkingParam.h
v AT5_CPPTesting_Mested.h
v ATS_CppTestingPri.h
V| [B ATSTESTCLANG.h
' ClassWithRefsToPrimitives.h
V| [B globalFun.h
v W
V| *+ ATS CinTests.cpp
V| *+ ATS_ClassDisabledConstructor.cpp
v *+ ATS_ClassDisabledConstructorWorkingParam.cpp
V|

AT5_CppTestingPrj.cpp

< Back Mext = Cancel

The last step is to confirm all selected files. Click ,,Finish” to finalize the

process of importing files and to display them in a main view (Figure 11).

Figure 11. Main View of ATS5 with imported project.

@ CfUsersKSP/Desi o]
o

CeTets | Code Generator

G Goit loShi TV ATAA B B 2

Stubs vie

Resut

+ [8] Giobal Functions

10

1.2. Opening existing project

If you already have created a project and now you would like to open it,
you can do that by:
e opening selected project from Recent projects list (Figure 12), or

¢ |oading a project from a file.

Figure 12. Recent projects list in Welcome Window

@ Welcome — *

Welcome to Automation & Testing Suite

Recent projects:
_ —
Load project from file

Create new project

Remove selected
project from list

Change license

Close

In case of opening existing ATS project from different device, you will
need to adjust some paths to be able to use such project. Right after opening it,
on the screen appears warning box with information which paths needs to be

configured (Figure 13).

Figure 13. Warning Box - Configure project paths
@ Warning X

Solution path is invalid. Project path is invalid. Please, update
(* pathsin Tools -> Configuration -> C++ Project -> Project.

Following the instructions, if you go to Tools — Configuration — C++

Project — Project section, you will notice some yellow triangles saying ,,This path

11

does not exist!”. Those errors occurs because loaded project has different paths
set (local paths from different device), so you have to adjust them to be set as
yours local paths. For SimuDI| path this issue is easy to handle — you can click
Suggest button and it will automatically search and set correct path for SimuDlII
project of this ATS project (Figure 14). However, to set project and solution path
you will have to search for correct files manually — press ,,...” buttons to open

browsing dialog and select correct paths.

Figure 14. Configuration - Configure project paths

el i3e

@ Configuration - Project X

| v pe to find Project

v App(l}lcatlor; Solution to test | C:\Projects\ats5\Testing\ATS_CPPProjectTesting\ATS_CPPProjectTesting.sln 1
enera

Compilation to... This path does not exist!

Appearance Project to test C:\Projects\ats5\Testing\ATS_CPPProjectTesting\ATS_CPPProjectTesting\ATS_CPPProjectTesting /1
Company
v (++ Project Testing project configuration
Database Release ® Debug
(@re
Reports SimuDlix64 path | C:\Users\Test\Downloads\project\Bin\SimuDIx64CPP\Debug\SimuDIlx64CPP.dlIl] Suggest
Requirements
Code Generator - [a
]
i
Project tree D"
=
i

V| Keep SimuDIl connected

V| Show CTC warning before tests

Save configuration Cancel

When those paths are fixed, you can save configuration. When you rebuild
SimuDIl some errors may occur, but those errors must be resolved manually in

SimuDII project.

1.3. Removing project

If you have deleted a project, or moved it to other folder, you could see this
project as disabled element on the list (Figure 15). To remove that element, simply

select this project and then click the button ,,Remove missing project”.

12

Figure 15. Remove missing project in Welcome Window.

Welcome — x

Welcome to Automation & Testing Suite

Recent projects:

_ —
Load project from file

Create new project

Remove selected
project from list

Change license

Close

In case you would like to remove a particular project from Recent projects
list, you can do this by selecting it and clicking ,,Remove selected project from

list”.
1.4. Saving project

To save a project you can go to File and select ,,Save project” (if your intent
is to overwrite the existing project file) or ,,Save as” to save but simultaneously
create new project file. There are also dedicated keyboard shortcuts for both

actions.

Figure 16. File — Save options.

@ Simulation Code Coverage View Tools Help
% MNew project Alt+M
éLoadprnject

& Save Project

i) Save as Ctrl+Alt+Shift+5

() Exit

Another way to save project is by using this button from Toolbar: E_@
A user can specify a saving method in Tools — Configuration — Database.

The options are: saving tests as JSON files or saving them in MongoDB database

13

(Figure 17). In this second case, it is required to have MongoDB software to save

tree in database.

Figure 17. Configuration - Database.

@ Configuration - Database pd
Type to find Database
* Application Save method
General
Compilation tools MongoDb
Appearance

Company ® Save to file
* C++ Project

Project

CTC

Reports
Requirements

Code Generator
Database file C:\Users\KSP\Desktop\MewProject\db

Save configuration Cancel

14

Chapter 2. Testing files

In this chapter, you will get to know how to build DLL, prepare your files

for analysis, create tests and how to run them.

2.1. Building SimuDLL

Now, when you have opened a project or created a new one, there is only
one more step to do before testing your files. This step is to build the DLL. It can

be done by clicking the third button on the left: s
DL

However, before building it, you should decide whether you would like to

have it built with CTC enabled or not. If yes, go to the Code Coverage tab and

tick the checkbox ,,Build SimuDLL with CTC” (Figure 18).

Figure 18. Code Coverage tab.

File Simulation EeGLINEGIEELEY View Tools Help

CPP Tests { . Build SimuDIl with CTC
[=_| - Append coverage results
,"’: Oﬁ I () Reset coverage results

If you decided to build DLL with CTC enabled, you can set CTC options

in Tools - Configuration — CTC menu (Figure 17).

Figure 19. CTC Tools.

@ Configuration - CTC x
c
~ Application Code coverage report type
General
Compilation tools ®) Statement coverage Deecision/Branch coveray ge MC/DC coverage
Appearance
Company
¥ C++ Project CTC report generation

Project
Database Generate TXT repart Auto-open after generation
CTC
Reports Generate XML report Auto-open after generation
Requirements
Code Generator Generate HTML report Auto-open after generation

Source code editor coloring option

@) Accurate Expanded

CTC additional options

Analyse header files
CTC report threshold 100 | %
Cancel

15

Last important step to take, is to make sure that all constuctors and
destructors are defined correctly.

Constructor and destructor methods are methods, which are used to create
and destroy objects of the class with tests. By default, these methods are defined

without any parameters, in the way showed on Figure 20.

Figure 20. Defining constructors with non-params.

ATS_CppTestingPrj : Construct

1 ATS CppTestingPrj::construct()
2 {
3 this->object = new ATS CppTestingPrj():

4 };

However, in some cases there is a necessity to define them with parameters.
In such situations, if the application recognizes it, application will display an

information, as shown on Figure 21.

Figure 21. Information while recognizing constructor with parameters.

rsxbdCorarudtor | Construdt

ATS ClassDisabledConatructor:

After all is set up, successful building the DLL will display a dialog with
confirmation (Figure 22). On the other hand, if something fails you will get errors
displayed in a log window at the bottom of application with details — what went

wrong.

Figure 22. Successfully built DLL notification.

& Info >

o 2022-03-1512:24:02 SimuDllx64 project compilation successful!

0K

16

After choosing files to analyze and compile the DLL now you are ready to
test them.

2.2. Adding new test

Adding test to adapters (tree items named as class methods or global
functions) is possible in three ways.

First one is to simply double-click on adapter (this option is available only
when adapter does not contain any tests yet). Second one is to use context menu

on adapter by pressing right mouse button on it (Figure 23).

Figure 23. Adding tests via context menu.

Stubs viewer ®

Name Result =
d ATS_ClassDisabledConstructor

Constructar

Destructor

add Te Run all tests
addPag Run all method tests

| o |
add?

- ATS ClassDisabl Reset all tests' results
Constructor Import method tests (*.json)
Destructar

v addToParam)
2ddToC Export method tests (*,json)

Import tests for the whole tree (*.json)

- add?ToParam Export all tests (*.json)

add2To

- ClassinAddtionalli
Constructor

Destructor Expand adapter

Expand whole tree

Collapse whole tree

add Collapse adapter
testA

getExtnededName
S_CppTestingPrj

Constructor

Destructor

add

1
E
ENE z EEERE

4

And the last, third option is to use the second button from the right side of

a Toolbar ,,Add a new test to the method””: 'E'.
o

To create a test with above button, you have to select a target method first
— it will be added directly for this method.

17

Figure 24. Additional options for test in Stubs Viewer

- {[‘_}t switchCaseFunction

| switchCaseFunction_Test1

switchCaseFunction2

adduint

&5} addDouble

addFloat
testA

badArrayMewlengthException

T} unhandledException
getExtendedName
changeGlobalVar
returnPtr
structPtrRet
tabsPtrRet

ATS_CppTestingPrj_1

—_—

Application allows you to rename test by double-clicking on it. Also, there

Run all tests

Run selected test

Add sibling test
Remove test
Duplicate test

Take a snapshot
Reset all tests' results
Import test (*.json)
Import tests for the whole tree (% json)
Export test (*,json)
Export all tests (*.json)
Expand whole tree

Collapse whole tree

Is a possibility to remove test, duplicate it, add sibling test, take a snapshot of it,

run it and reset its results (Figure 24).

2.3. Modifying a test

Clicking on test (tree item) shows a new window, that allows user to

specify values for input arguments of methods/functions as well as expected

return values (Figure 25).

Figure 25. Main View of ATS5 with added tests.

@ CUsers/KSP Desktop/NewProject atsSpej”
File Siulation Code Coveage View Tooks Help

PPTests | Code Generater

G 8o ke SlaEs IE V] AR A lof
e LD ATS_ClassDissbledConstructor | add : add_Testl

- tostA
tosta,

[El] badArraytiewt engthException
(5] urhandiedException
+ [E] getExendectiame
getExtendediame Test!
gatExtendedhiame_Test2 - T
= [changeGiobaivar - [reutawean]
changeGlobalVar Test! - -

Test Deseription.

18

Application allows user to input only parameters that are used in a specific
method/function. For example, for switchCaseFunction method, which returns
integer and its parameters could be also only integer numbers, there will be error

(marked as red background), if user tries to input other data types (Figure 26).

Figure 26. Setting wrong data type for a test parameter
ATS_CppTestingPrj : switchCaseFunction : switchCaseFunction_Testl

Hame Type Sequence Value
* Input arguments
a int 22
b int
c int
* Expected return walue
int dbo =
* Global Variables
* Input
glokbalVariakle int 4
* Expected wvalue

_qlobal‘.’ariable Ml int
ATt o lchalVariakble =

InfglokalVariable2
ExpgglobalVariable3
glokalVariaklel
glokalek
globalStruct
glokalStructe
glokalStr2
glokalTaks
glokallUserStruct -

Global variables can be added by selecting them from the expanding list
(Figure above). You can select many different global variables in single test but
once used global variable in input argument or expected value cannot be

duplicated.

To use a user variable, firstly you need to create it in the view of class
definition or while having selected any method/test of the class which you would
like to create user variable for. By default, user variables creation section is
located on the right side of ATS application just under Test Description (Figure
27). It is a docking widget so you can always undock this and place anywhere

else to let it be more comfortable to use.

19

Figure 27. Add user variable section

Global Variables [=]ES]
Type Mame =
int globalVariable
long globalVariableZ =
1 b
Test Description ®
User Variables B
+
MName Type Value
myMName int 4
¥ myStruct UszerStruct 14,3.2}
% int 4
b float 3.2
* myStruct2 Tabs 12,2.0,new int[2],nullptr}
x int 2
b float 2.0
pointer int* new int[2]
nest UserStruct * nullptr

Press plus ,,+” button to create new user variable and specify name, type
and value for it, then push Enter to confirm your inputs. Removing already
created user variable is done after you select it from the list and then clicking
minus ,,-* button. SimuDII needs to be rebuild to allow you to use such created
user variables and select them from combobox placed in the test definition section
(Figure 28).

Figure 28. User variables usage in test

ATS_CppTestingPrj : switchCaseFuncbion : switchCaseFuncbon_Test2 Sequence Length | 1

N . Type Name
Name Type Sequence Value e svepaivaziapie
~ Input argumencs] long globalVariable2
int
b int
int
~ Expected return value Test Description @&

int

~ Global Variables

Input

Expected value
~ User Variables

~ Input
myName int 4 @E
~ myStruct Userstruct (4,51

x in
b float 32

v myStruct2 Tabs {2.2.0,new int[2] nullptr}
x int 2
b float 20
pointer int* new int[2]
nest UserStruct ™ nullptr

Similarly to global variables, you can use multiple user variables in single
test, but they cannot be duplicated.

20

In tests, where a parameter can be a reference (e.g. int &), application

allows you to use only user (local) variables or global variables (Figure 29).

Figure 29. Reference to global variable in test’s parameter

Class\WithRefsToPrimitives : refTolnt : refTolnt Testi

Hame Type Sequence Value

* Input arguments
ref int & globalVariable

* Expected return value

int 4
| Global Variables [= |
Type Mame Value 3
int glokalVariakble
long globalVariable2 2

If you declare user variable as a pointer, for example in this way: (type)

int* (name) ptr (value) nullptr, it can be then used in test’s parameters like this:

Figure 30. User variable as a pointer used in test’s parameter

ATS_CppTestingPrj : add : add_Testl

Hame Type Sequence Value
* Input arguments

a int £ *myIntPtr

= int 2

= int 3

v Expected return valus
int 4

There is also a possibility to use pointers in arguments that are not using
references. For example, you can define user variable as a pointer to integer and
then use it as a parameter in argument of int type — simply use *userVar or
userVar[0].

On the other hand, if you want to set value or set expected value of user
variable which is pointer type, you can only do that by typing ,,*” before

variable’s name or array index after name like ptrVar[0] (Figure 31).

Figure 31. Setting or getting pointer user variable

—————— ————

v User Variables
+ Input

ptr[0] int* 1
v Expected wvalue
ptr int 1

21

2.3.1. Sequences

A particular test can be run in sequences. To add new sequence, click the
,, T button on the right side of the fields with test params (Figure 32). Also, you

can modify the amount of sequences by putting its length number in the textfield.

Figure 32. Test sequences

ATS_CppTestingPrj : switchCaseFunction : switchCaseFunction_Tests Sequence Length | 4 + || -

NHame Type 51 52 53 54
a int 2
b int 421 34
[int 33
* Expected return wvalue
int 22
¥ Global Variables
+ Input
globalVariable int &
v Expected value
globalVariable int T
~ User Variables
* Input
* uu Struktura {4,3,2,nullpcr} {,,,} Hoool {ree
x int 4
b float 3
te unsigned long.. 2
nest nestedStruct * nullptr
+ Expected value
* uu Struktura {1,2,3,*} Ioool) doool looo
b 4 int 1
b float 2
te unsigned long.. 3
nest nestedStruct * *

Each column ,,S1”, ,,S2” and so on, is a separated sequence. So for first
sequence of this test for input arguments were provided values: 3, 421, 33 and for
expected return value 22. Due to empty cells in second sequence, all values from
previous sequence (S1) will be extended also to second sequence. It means that
values for second sequence are exactly the same as for S1. You can notice that
value for b parameter has changed in third sequence to 34. So all other empty
cells will automatically expand values from previous sequence besides value for
b parameter. About expected return value, in above case it will always be equal

to 22 in each sequence.

To sum it up, if you do not define parameters in the following sequences,
they will be automatically set as values of earlier defined parameters. Sequences

work the same also for global and user variables.

22

In test, you can also add description, which will be displayed in generated
reports (Figure 33).

Figure 33. Test description
Test Description =

This is test description.

User Varizbles Test Description

Global Variables [=]ES

Type Mame

int

long

double

float

const char *
Struktura
StrukturaDwa
Strukturastr
Tabs
UserStruct
nestedStruct

globalVariab
globalVariab
globalVariab
globalVariab
globalek
globalstruct
globalstruct
globalstr2
globalTabs
globalUserSt
globalNested

v v v v www

nestedStructTwoDeepth globalNested _
1 i) T [’

By default, this section is placed on the right side of ATS application under
Global Variables section, but it is a dockable widget so you can always dock it

anywhere else.

2.3.2. Range values

ATSS allows users to create tests with range values in parameters. Range
Is specified as [min, max, step]. To use a range, you have to put your values
between square brackets ,,[” and ,,]”, with comas as separator for min and max
value and a step (which is optional, by default it will be set to 1). Ranges are
presented on Figure 34. Important information about ranges is that they differ for
return values. In such case, you can only specify [min, max] params (without

step). It means that return values specified in a range (e.g. [1,50]), will take every

23

value from that range as positively passed in a test (see expected return value in

sequence S2 of below example).

Figure 34. Ranges in tests’ parameters

ATS CppTestingPrj : switchCaseFunction : switchCaseFunction_Testd

Hame Type
* Input arguments
2 int
b int
c int

* Expected return value
int

51 52
£6 3
[1,5,1] 3
2 4
<100 [1,50]

Another example — range specified as [5,10,2] will run test with given

values 5, 7, 9 — so there will be created 3 sequences additionally for purpose of

this range. If user will provide two ranges in separated parameters within single

sequence, application will combine them, using Cartesian product operation. It is

also possible to have range with a negative step. This requires putting a bigger

value as a minimum parameter than maximum parameter (e.g. [15, 2, -3] or [-5,

-1, 1]). As shown on Figure 34, after execution of this test, its result will passed

(the received return value is 2 for S1 and 4 for S2, so it passes both conditions).

2.3.3. Special operators

Moreover, application allows you to use special operators for specifying

return value. Those operators are:
e ,<”-values less than;
e . >” -values bigger than;

e ,.<="-values less and equal to;

e >="-values bigger and equal to;

. ,,1”-negation (it means that user can expect every value except the ones

given in return range if exclamation mark was added);

e _*” -all values are correct.

24

Figure 35. Special operators in ranges

ATS_CppTestingPrj : switchCassFunction : switchCaseFunction_Testil Sequence Length

Hame Type 51 52 53 54
¥ Input arguments

a int 3 3
b int 4 -2 [-3,10,3]
& int S [1,10,2]

* Expected return value
int 08 =0

<=82

Usage of these special operators is presented on Figure 35. It is not allowed
to use those operators for input arguments, but for all expected return values (also

for global and user variables) it is completely correct.

2.3.4. Structs usage in tests

It is possible to use structs within tests and to define user variables of struct
type. In ATS5 such test will be displayed and handled a little bit different than
regular test with primitive types (Figure 36).

Figure 36. Empty struct fields

ATS_CppTestingPrj : structFun : structFun_Test1

Hame Type 51
* Input arguments

a int

* b Struktura
X int
b float
te unsigned long..
nest nestedStruct *

* Expected return valus
woid

As you can see, the general row of such struct shows what type is this, and
after filling out the values in the below cells, this general row will be updated in
real-time inside curly brackets {} with each value separated by a comma (Figure
37).

Figure 37. Struct usage in test

ATS_CppTestingPrj : structFun : structFun_Testl

Hame Type 51
~ Input arguments
a int 3
* b Struktura 13,21.3,53, nullptr}

X int 3
b float 21.3
te unsigned long long 53
nest nestedStruct * nullptr

+ Expected return value

wvoid

25

There are some rules to follow while defining values of struct fields in a
test. Firstly, it is forbidden to use ranges as input arguments of struct — it is only
possible to use range as expected return value. When a test contains global
variable of struct type, it is forbidden to define its field with usage of user variable

as its value. But on the other hand, if user variable is used in a test and it is a struct

type, it is possible to use global variable as its value (Figure 38).

Figure 38. Struct examples in test

ATS_CppTestingPrj : structFun : structFun_Test

Hame Type 51
a int 3
* b Struktura {3,21.3,53, nullptr}
x int 3
b float Z1.3
te unsigned long long 53
nest nestedStcruct * nullptr
+ Expected return value
wvoid
* Global Variables
* Input
+ globalUserStruct UserStruct {5,0.5}
X int 5
b float 0.5
v Expected wvalue
¥ globalWNestedStruct nestedStruct {{'h'}, 34}
v nestnest nestedStructTwoD.. {'h'}
x char 'h'
x int 34
¥ User Variables
~ Input
* uu Struktura {4,5,44,nullptr}
4 int 4
b float g
te unsigned long long 44
nest nestedStruct * nullptr
* Expected wvalue
 WW Struktura {31,2,2,glocbalNestedStructPtr}
x int 31
b float 2
te unsigned long long 2
nest nestedScruct * globalNestedS5tructPtr

Additionally, user can set a value for current struct using option from

context menu ,,Set variable” (Figure 39).

Figure 39. Set struct variable

ATS_CppTestingPrj : structFun : structFun_Testl Sequ
Hame Type 51
* Input arguments
a int 3
- b F— .
= fimie - Expand until non-empty sequence
b float - Expand all empty sequences
te unsigned long. -
nest nestedStruct * - Expand and replace all sequences
~ Expected return value Copy
R veid Paste
~ Global Variables
= Input Set Variable
* globalUserStruct UserStruct globalUserStruct Restore default value
x int -
b float -
* Expected walue
* globalNestedStruct nestedStruct {{'h'}, 34}
~ nestnest nestedStructT.. {'h"}
x char 'h'
x int 34

26

Set variable option will open a new dialog with list of all global and user
variables of the same type as currently selected struct (Figure 40).

Figure 40. Set Variable for struct

Select variable x

uu
ww

Set index for pointer ok Cancel

In case of pointers, it is possible to set an index. When variable is selected
and confirmed, the fields with values cannot be modified (Figure 39) — they
contain ,,-“ symbol. The only option to change it, is to restore the value by

selecting option from context menu ,,Restore default value”.

2.4. Running tests

After filling in all params that you need for your tests, now you can run

them. To start one selected test — click the button in Toolbar: ?[;

If your mouse’s focus will be set to class or adapter, clicking Run Selected
Test will cause running all tests from the selected class/adapter. Running selected
test is also possible using context menu, after right-clicking tree item in the Stubs
Viewer. If you would like to run all created tests, simply use button E>

or again — use a context menu.

To select many tests from different classes and to make them execute, user

can select particular checkboxes and then use the button to run them:

A 4

There is also a possibility to execute all created tests with automatic mode

from command line. To have it done, open a command line from the folder with

ATS5.exe file. Then, type in the following instructions (Fig. 41):

27

ATS5.exe -i PATH

PATH is a path to your created .ats5prj file which includes tests, that user want
to execute. After running above command, ATS5 automatically generates HTML

reports for done tests.

Figure 41. Automatic mode for running tests

BN C:\Windows\System32\cmd.exe — m} b'e

After running tests with methods described above, an informational dialog
will appear. It includes such information as: numbers of tests done correctly and
incorrectly, name of executed test, status of the test result (Passed/Failed), time
in which the test was performed. In case that some test is not executable (for
example due to incorrect data types in params), this dialog will also include that
information. Also, status of executed test is shown in column ,,Result” in the
Stubs Viewer tree.

A view with the results of executed tests could be different — it depends on
configurations that were set in Tools. Settings concerning generating reports can

be checked in Tools — Configuration — Reports (Figure 42).

28

Figure 42. Reports Tools

Configuration - Reports X
Reports
~ Application Folders
General
Compilation tools FermemE !
Appearance :
Company
C++ Project Image sub-folder
Project
Datab
CTC
T
Requiremen its Don't show again "D you want open generated report?” Auto-generation after executing tests
Code Generator

Charts

Chart width [px] 1200 |+

Chartheightpx] |72 |+

Floating numbers
Predsion type

Auto Setmanual iy

Set precision 6

Type of saving photos to the report

@) only bases4 only image files use base64 and save image to fle

Type chart render

only separated charts @) only summary chart all

sequence table type

® auto wvertical harizon ital

Struct of page (with the passibility to turn on { off)
V| Table of content

V| Images
V| CodeArea
V| Sequences

v Code Coverage

Save configuration Cancel

In here, you can choose paths for reports, as well as for other images, and
establish where they should be stored. By using checkboxes you can decide
whether to auto-generate a report after every test execution or not. There is plenty

of settings to choose, that will allow you to individualize ATS5.

If you would like to always show charts after test execution, you will find
that option in a tab, called View. There is a checkbox ,,Enable charts” (Figure
43).

Figure 43. View tab

File Simulation Ceode Coverage RYENN Tools Help

CPP Tests Code Generatar ings| Show,/Hide Log output

[2_' — nes E E Enable charts

o (.d;j LL @ i Clear Log Alt+Shift+ C
Stubs viewer ﬁ Restore view -

29

After setting this on, every executed test will automatically show charts

with results.

2.4.1. Charts

Charts are presenting test’s results — they can be very simple or pretty
complicated, depending on given parameters value and number of sequences.
Charts consist of input arguments, expected return values for variables and actual

received return values.

Figure 44. Charts section

retEap

o
3 ala ap

In the middle part of the Charts widget, you can find generated chart, tools
for manipulating the chart and buttons for exporting the results. On the right side
of it, there is a table with parameters’ values. These values will be changing in
real-time when your mouse will be hovering points on the chart.

The display tools consist of a button for resetting the view and three
checkboxes to turn on/off displaying cursor, errors and axis on the chart.

The following two sections concerning axis X and axis Y include tools for
changing the scale of displayed chart — you can zoom it in or zoom it out. Also,
there is a slider for moving the graph to right or left (for X axis) and to up and
down (for Y axis). Moving the chart is also possible without the toolbar - in such
case user has to click and hold on the chart and then move the mouse in any
direction. In addition, zooming in and out the chart is allowed by using mouse
wheel (axis X) and using mouse wheel while holding SHIFT (axis Y).

Furthermore, in the section called File, there are three buttons for exporting.

The first one is used to generate PNG file with the displayed chart, the second

30

one is used to export the results to CSV file, and the same happens, when user
clicks the last button, with the only difference that the file with results will be in
a format of JSON.

2.4.2. MC/DC coverage

As it was mentioned before, settings concerning CTC options can be
defined in Tools — CTC, but there are also some other important decisions to make,
when you would like to generate test report with MC/DC (Modified
Condition/Decision Coverage) coverage included. Those decisions can be made

in Tools — Project section (see Figure 45).

Figure 45. Project configuration with CTC options

&

Project

* Application
General
Compilation tools

Appearance
Company Project to test 1

* C++ Project

Database Testing project configuration

Solution to test 1

CiC

Reports @) Release Debug
Requirements

Code Generator

SimuDlbke4 path C:\Users\Tests\Desktop\MCDCTests Suggest

Project tres

| Keep SimuDll connected

| Show CTC warning before tests

Save configuraticn Cancel

The checkboxes in the bottom of the dialog allow you to decide whether
you would like to show CTC warning dialogs when executing tests and whether

you would like to keep connection with SimuDLL. The last one needs to be turned

31

off if user wants to generate CTC report, so if you would have this checkbox set

on and execute test, you will get a warning dialog about it.

To enable generating MC/DC report, go to Tools — CTC and select

,MC/DC coverage” in Code coverage report type. Furthermore, select which

type of report you would like to generate — TXT, XML or HTML report. Now, if

you save your configuration, you are ready to execute tests with MC/DC feature.

In the general overview (Figure 46), when CTC option is set on, there are

added some new features, such as:

e In the Stubs’ viewer (on the left side of the screen below in the yellow

frame) there is added a new column ,,Coverage” which displays the

percentage of code coverage. If it shows 100% it means that all lines of the

code have been tested.

e Coloring the lines (Fig. 47) — in the method’s definition on the right side

(yellow frame), the colors of the lines have different meanings.

Explanation of them will be given below the Figure 46.

Figure 46. Main ATS5 window with CTC feature

file Simulation Code Coverage View Tools Help

CPP Tests Code Generator

o &l ke SaEe TH V] AdAR kot

Stubs viewer

Name Resut Calls Goverage =
= (=3 ATS_CppTestingPy) 12[l24%
Constructor
Destructor
[ada
- [sw

[7 switchCaseFunct.
- [switchCaseFunction2

unct. Faile
[T switchCaseFunct. Failed
Fail
[T switchCaseFunct. Fail
st

led
[____mcoctest2 3 [i00%
[T, test_toPassed
[T test1_toFailed Failed
[T test2_toFailed Failed
medeTest2WithParenthes
medeTestd
checkANDthenOR
[] medcTestd
5t

adduint
~ [addDouble -
[T tast! withoutCDC Failed

3 |

Line which is marked:

ATS_CppTestingPr] : mcdeTest2

Name

ATS CppTestingPrj : mcdcTest2 : ATS_... B

Type N Val
1int globalvariable
2 lon iable2
3 alvariable3
vk lcbalvariableS

e green — means that this line was used and executed during the test,

32

¢ yellow — means that there was MC/DC recognized in this line,

e red — means that this line of code has not been executed and used during
the test (the conditions were false, so the program did not go inside the
lines).

Figure 47. Lines' colors in method definition

ATS_CppTestingPrj : switchCaseFunction2 : ATS_CppTestingPrj.cpp B&

int ATS CppTestingPrj::switchCaseFunction2 (int

£ a, int b)

84 {

85 if(a > b) {

86 if(b == 3)

87 {

88 return 3;
B89 }

a0 else

91 {

92 return 5;
93 }

94 } else/*test*/ if(a <« b && a == 3)
95 {

956 if(a == 3)

97 {

93 return 3; }
99 else

100 { return 5;
101 }

102 }

103 else

104 {

105 if(b == 7)

106 {

107 if(b == 3)
1na] o

To open MC/DC details dialog, click the yellow line’s number (it is
underscored) in method’s definition. It has 3 main sections (Figure 48) — on the
top of the MC/DC dialog there is located analyzed condition from already
executed test. Then, there is a table with all the conditions listed and their actual
amount of execution — so value ‘5’ in the first row of True column means that
this condition was obtained 5 times and of course was successful (the result of
True && True is always True). In the second row you can see that this condition

was obtained and executed only once, and its result is False.

Underscore (“_") in the ,,Condition” column means any boolean value

(True/False) as this value will not affect the result anyway.

33

The last section of this dialog is the description. It shows if the current
condition (leaf-level Boolean expression) is independent from other conditions’
results. The independence of a condition concerns that only one condition
changes at a time. The symbol plus (“+”) or minus (“-“) placed between
conditions’ numbers in the description, indicates which pair of conditions were
achieved (plus) and which were not (minus). If there is at least one pair with plus,
it means MC/DC was fulfilled.

Figure 48. Example of MC/DC dialog — plus symbols.

MC/DC Mcdc.cpp:33 - O *
iffa<b&&b=c)

True False Condition 3
1|1 a T && T
218 il T && F
3@ 8 F &&
Description Pairs =
MZ/DC (cond 1) 1 1+ 3
MC/DC{cond 2): | 14+2

Interpretation for above example can be: to check the condition’s
independence, there needs to be executed a pair of condition 1 (True AND True)
and 3 (False AND _), and also a pair of 1 and 2 — and they all have already been

achieved. In other words:

e The first condition (T && T) and the third condition (F && _) demonstrate
that ‘a <b’ can independently affect the outcome decision.

e The first condition (T && T) and the second condition (T && F)

demonstrate that ‘b > ¢’ can independently affect the outcome decision.

34

Let’s have a look at opposite situation with minuses (Figure 49).

Figure 49. Example of MC/DC dialog — minus symbols..

@ MC/DC Mede.cppmé2 - O st
if(a |l (b&&c))

True Falze Condition m
1|1 2] T Il (_ && _}
2|1 a E || (T && T}
38 a F || (T && F)
4@ @ F || (F && _)

Description Pairs

MC/DC (cond 1):
MC/DC (cond 2):
MC/DC (cond 3):

Example description interpretation for above is — to check independence of

the condition there is a need to execute:

e The first condition (T || (_ && _)) and the third condition (F || (T && F))
or the first condition and the fourth condition (F || (F &&)). They all
demonstrate that ‘a’ (from analyzed expression) can independently affect
the outcome decision.

e The second condition (F || (T && T)) and the fourth condition (F || (F &&
). They all demonstrate that ‘b’ (from analyzed expression) can
independently affect the outcome decision.

e The second condition (F || (T && T)) and the third condition (F || (T &&
F)). They all demonstrate that ‘c’ (from analyzed expression) can

independently affect the outcome decision.

35

2.5. Importing/exporting tests

Application allows you to import ready tests (in a format of .JSON files)
to the project. It can be done by right-clicking a class or method in Stubs viewer
and selecting the option ,,Import method tests™/ ,,Import tests for the whole tree”.
Other way to import tests is to select a button ,,...”, that is placed next to Sequence

Length in tests parameters field or in class/method definition.

Figure 50. Importing/exporting buttons in class definition.

CPP Tests Code Generator

Th e _ o om b o _ o
G Gl ke Skeey DV ALAL B B T T
Stubs viewer a®
ATS_ClassDisabledConstructor

Property Value =
me ATS_ClassDisabledConstructor
0 =8

File location: C:/projects/atss/Testing/ATS_CPPProjectTesting/ATS_CPPProjectTestin g/ATS_ClassDisabledGonstructor.h

Template kind: None

Exporting tests is equally simple — you can find this option in context menu
of tree items or — after selected a specific test — export it via button, placed next
to Sequence Length. As you can see, application allows you to export tests as
CSV and also as JSON files.

Figure 51. Importing/exporting buttons in tests’ parameters section.

CPPTests Code Generator

@ Gloi ta iy 5V ALAA fimie
Stubs viewer

ATS_ClassDisabledConstructor ; add ; add_Test1 SequenceLength | 1 4]

< [Mame Type Sequence Valus

Name Result
~ Input arguments
= [} ATS_ClassDisabledConstructor a int

structor
B ructor

~ Expected return value

I8|()| 8|18 ¢

The difference between importing/exporting files in format of JSON or
CSV, is that while using .JSON files, the test is imported as a new test, and
exported test is also exported as a whole element. Importing by CSV file will
cause loading only tests’ values, and exporting as CSV file will save only tests’

values.

2.6. Modifying SimuDLL project

In case there will appear any error during SimuDLL project compilation,

user can open SimuDLL project via ATS application by clicking Simulation menu,

36

then ,,Open SimuDLL project in Visual Studio”. After that, .vcxproj file

containing SimuDLL will be opened.

Figure 52. Simulation — Open SimuDLL in VS.

& C:/Users/KSP/Desktop/TestCharts.ats3prj™
File m Code Coveraoe View Tools Help

P ud Open SimuDIl project in Visual Studic

piL Build SimuDil
,‘ é,g Force SimuExe close A A

Stubs O Discennect from server

Proper SimuDLL project configuration looks like this:

Figure 53. SimuDLL Configuration.

I Browse Information
I> Build Events
> Custom Build Step

4 Configuration Properties ~ General Properties

General Output Directory $(SolutionDir) Bin\$(ProjectName)\$(Configuration)\
Advanced Intermediate Directory $(SolutionDir) Build\$ (ProjectName)\$ (Configuration)\
Debugging Target Name $(ProjectName)
VC++ Directories Configuration Type Dynamic Library (.dll)

> C_"’C** Windows SDK Versian 10.0 (latest installed version)

b Linker Visual Studio 2022 (v143)

b Manifest Tool C++ Language Standard 1SO C+ +17 Standard (/std:c++17)

> XML Document Generator C Language Standard Default (Legacy MSVC)

Most important is to specify ,,Platform Toolset” to ,,Visual Studio 2022

(v143)”. Otherwise, there may appear errors during compilation. One of the

common errors that appear (if ,,Platform Toolset” is not specified) is that our

application cannot find included system headers in files that we are trying to

analyse.

37

Chapter 3. Additional features of CPP Tests

Besides main features that were described before, ATS5 has some other
functionalities. On the Figure 54 there are buttons marked in red, yellow, green

and blue.

Figure 54. Toolbar additional features

CPF Tests Code Generator

i w e su AR B[EF

Button in blue frame concerns refreshing project files. It will work, if the

application finds any changes in files, that user is currently using in a project (in .h
or .cpp files). After clicking the button, if there had been any changes made to the

files, the application will update them, remaining all the created tests by user.

Buttons in red area are related to increasing/decreasing font size for

constructor and destructor methods’ definitions.
Buttons in yellow frame concern generating CTC and ATS reports.

Buttons in green frame concern adding new test (on the left) and deleting

selected stub (on the right).

In case of a problem with executing tests, you can force SimuDLL to close.

To do that, go to Simulation — Force SimuExe close (Figure 55).

Figure 55. Force SimuExe close

& C:/Users/KSP/Desktop/TestCharts.atsSpri*

File Code Coverage View Tools Help

CPF “4 Open Simulll project in Visual Studio
piL Build SimuDll
’4 E;,G Force SimuExe close
Stube O Disconnect from server

38

Additionally, in Tools tab, you can find an option called ,,Load original
source”. It is used for restoring imported file to its original version — without any
added tests, variables or snapshots. Snapshots are used to make shots of a test,

which cannot be modified but they can be used to restore its values.

Figure 56. Tools tab

File Simulation Code Coverage View Help

CPP Tests Code Ceneratar !;fg Load criginal source
[=_r - nes E é c &i’,l_]. Configuration —s. O o
,""‘: (rl.,j i.l. @ IE% E A2 License tool < [n [I:I

3.1. ATS Reports

Those reports are generated as HTML file. They include Table of contents
in the top of the page, then the titles of classes that contain done tests, names of
the methods with their test results and their definition titled as Function Code.

Optionally there could be included comments section. In the middle and
the bottom of the page there is a chart with a legend of params, and below that

the report includes a table with the values.

39

Chapter 4. Code Generator

Code Generator is a functionality that allows you to load JavaScript files,
modify them, create new one, and then use them to generate dynamic code

between customizable tags in .hpp, .cpp and .h files.

Figure 57. Code Generator basic button
File Simulation Code Coverage View Tools Help

CPP Tests Code Generator
Be) ()
In Code Generator tab, there are 3 basic buttons. The first on the left is used

to run all JS scripts, loaded to a project. The second in the middle is used to save

single, selected script. And the last one saves all created or modified scripts.
4.1. Scripts Control

In this tab you are able to load existing JS scripts and open them in
application (Figure 58). To load scripts from your computer, click Add button. To

create new JavasScript script, select Create.

Figure 58. Buttons for Scripts Control

Scripts Control (&]

15 scripts

Files Cantral

Add Create Remove t L
Script

v
20V sampled.js

IV samnple2 Outside,js

4 writeToTextFilejs

Scripts Control

If you would like to remove loaded .js file from the Script list, select the
item and then click Remove button. All scripts on a list will be executed in

ascending order (from 1 to n). Down and up arrows buttons allow you to place

40

particular .js file lower or higher on a list, which will cause changes in scripts
execution order. Checkboxes are used to enable or disable files from the list,
without removing them — if you do not want some script to be executed but you
want to save it on a list, simply uncheck the box. In this case, it will not be

executed.

The blue circle (Figure 58) placed near the name of a file means that this

file has been changed and stays unsaved. It will disappear after saving the script.

Going further, in the middle of the screen (Figure 59) there is a modifiable
field with JS code. You can add commands from Available commands list, which
Is placed on the right side — just click the line and area, where you would like to

have the command inserted and double-click the needed item from the list.

Figure 59. Scripts Control view in Code Generator

CPP Tests Code Generator

K @
. Scripts Control B8

5 ~Cripts Lontro = ©:/users/oliwia/Desktop/CodeGeneratorSamples/Js/sample.js
15 sripts

Add Create Remove

Script

I

2V samplezjs

3V | sample2Outside.js

4V writeToTextFile js 5
10 / /5y
11 / /sy
12 -
13
14
15
:

@ W N e
< 9

Scripts Control | Files Contr
-
|

To sum up, by modifying JS files there is a possibility to interact with all

the selected files and generate code from custom templates (by tags).

4.2. Files Control

Files Control basic buttons are used for importing files to the project,
adding new, single files or removing the selected one (Figure 60). Files to import
can be selected from Visual Studio projects or added separately by user.

By using add button, you can add .h, .cpp or .hpp files to the project.

Remove button allows to delete a single file but also to delete entire loaded

folder or a project.

41

In the tree with imported files, you can find output path and a button .,...”
that allows you to manually specify an output path for JS methods (InsertCode,
ReplaceCode). When these methods will make any changes to the files, those
changes will be saved just in this output path. It is set by default to the path of the
imported file.

Yellow triangle with an exclamation mark inside informs about warning —

a file cannot be found.

Figure 60. Basic button in Files Control

— Files Centrol =])
S Impart files Add Remaove
i
T InputPath Output Path
~ (] ATS_CPPProjectTes...
% hd Header Files
] V| b ATS ClassDi.. Ch\Users\Oliwia\Desktop\ATS_CPPPro...
_43 ¥ b ATS ClassDi.. ChUsers\Oliwia\Desktoph\AT5_CPPPro..
3 1 ATS_CPPTes.. Ch\Users\Oliwia\Desktoph\ATS_CPPPro...

ATS_CppTes.. ChUsers\Oliwia\Desktoph\AT5_CPPPro..
ATSTESTCL.. ChAUsers\Oliwia\Desktop\ATS_CPPPro..
ClassWithR... C\Users\Oliwia\Desktop\ATS_CPPPro...
b globalFunh - CAUsers\Oliwia\Desktop\ATS_CPPPro...
- Source Files

V| oo ATS ClassDi.. ChUsers\ Oliwia\Desktoph\ATS_CPPPro..

SRS SS
ERERIE

v e ATS ClassDi. Ch\Users\Oliwia\Desktoph\ATS_CPPPro...
V| e ATS CppTes.. Ch\Users\Oliwia\Desktop\ATS_CPPPro...
v e ATSTESTCL.. ChUsers\Oliwia\Desktoph\ATS_CPPPro..
V| & main.cpp Ch\Users\ Oliwia\DesktoptATS_CPPPro...
Additional Files

Clicking Import files button opens new window with selecting VCXProj
file.

Figure 61. Selecting file to import in Files Control

Select VCXProj file

Path to Visual Studio project: ||

Cancel

42

By going ,,Next”, there is a window that allows you to choose files, that
you would like to include in a project (Figure 62) — you can select single elements
or whole folders. To include them, select the item and click the right arrow. It

will move the content of the selected item to the right side ,,included files”.

Figure 62. Selecting particular files to include in Files Control

&«

Select files to import them to ATS project

Files to indude: Induded files:
b ATS_ClassDisabledConstruct... e+ ATS ClassDisabledConstruct...
h | ATS_ClassDisabledConstruct... e ATS_ClassDisabledConstruct...
h| ATS_CPPTesting_Nested.h e ATS CppTestingPrj.cpp
h| ATS_CppTestingPrj.h e ATSTESTCLAMG.cpp
h| ATSTESTCLAMNG.h & main.cpp
b ClassWithRefsToPrimitives.h
h| globalFun.h

At the end of the importing process there should be displayed a window
with information that the importing was successful. Such imported files will be
displayed in a tree and selecting one of its items displays the code of the file in
the field on the left (Figure 63).

Figure 63. Files Control view in Code Generator

CPP Tests Code Generator
o) e
_ Files Control =165 = 5 n n = N
= C:\Users\Oliwia\Desktop\ATS CPPProjectTesting\ATS CPPProjectTesting\ATS ClassDisabledConstructor.h
é Import files Add Remove Bl spragma once
i
T InputPath Output Path e .
+ %] AT CPPProjectlesting ic{-lcbb ATS_ClassDisabledConstructor
B | -
z Header Files _ 5 public:
3 [ATS ClassDisa... CiUsers\OliwisDesktopiATs_CPP... [6 ATS ClassDisabledConstructor(int x);
g V| h| ATS ClassDisa.. C: ivia\ DesktophATS_CPP... | . 7 int add(int a, int b);
] V| 4. ATS_CPPTestin.. C iwia\Desktop\ATS_CPP... | .. 8 int add2(int a, int b):
V| [n| ATS CppTestin, iwia\Desktop\ATS_CPP... | .. s
¥ b ATSTESTCLAM... iwia\Desktop\ATS_CPP... | ... 10 int classVar;
V! n| ClassWithRefs... iwiz\Desktop\ATS_CPP... | ... i
V| [globalFunh CA\Users\Oliwia\Desktop\ATS_CPP... | ..
Source Files
Additional Fil

43

List of Figures

Figure 1. LICENSE TOOIS.....ccuiiiiiieie e 3
Figure 2. Welcome WINAOWccoviiiiiieie e 4
Figure 3. Main VIiew Of ATS5. ... 5
Figure 4. Compilation TOOIS.ccoeiiiii e 5
Figure 5. Importing files t0 CPP TEStS.oiiiiiieiiecie e 6
Figure 6. ReqQUITEMENES LIStocviiiieiie e 7
Figure 7. Requirements in Configuration.ccccocoveiiiiiieiee e 7
Figure 8. Requirements Summary table. ... 8
Figure 9. Tools for adding/removing reqUIremMents.cccovcveveeevieesieereeseeseeenns 8
Figure 10. Selection section iN CPP TEeStS.cccviveeiieiie e 10
Figure 11. Main View of ATS5 with imported project.c.cccovevvevievieiininn, 10
Figure 12. Recent projects list in Welcome WiNdowccccccvevvevieieciineennen, 11
Figure 13. Warning Box - Configure project paths..........cccccceevvevvevieiiciine e, 11
Figure 14. Configuration - Configure project pathsccccccvevivevieeriniiiniineinnn 12
Figure 15. Remove missing project in Welcome WiNdow............c.ccccevvveinennen. 13
Figure 16. File — SAVe OPLIONS.cccuveiiieiie e 13
Figure 17. Configuration - Database............ccccoveviveiiieiie i 14
Figure 18. Code Coverage tab.ccccveiiiiie i 15
FIQUre 19. CTC TOOIS. .ioveeieieiiiiie ettt 15
Figure 20. Defining constructors with NON-params.cccceevveveeveeieesine s 16
Figure 21. Information while recognizing constructor with parameters. 16
Figure 22. Successfully built DLL notification.cccoocevviiiiieneninicee, 16
Figure 23. Adding tests via CONEXt MENU.ccverierierieieseeie e 17
Figure 24. Additional options for test in Stubs Viewer ..., 18
Figure 25. Main View of ATS5 with added tests.ccocvviereiiiene e, 18
Figure 26. Setting wrong data type for a test parameter...........ccoccevvvieieneennnen, 19
Figure 27. Add user variable SECHIONccceviiiiiiie e 20

44

Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44,
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.

User variables usage INteStccvevvevieeiiieiie e 20
Reference to global variable in test’s parameterc.ccevcvvenenne. 21
User variable as a pointer used in test’s parametercooeveerivvennns 21
Setting or getting pointer user variablecccceveiiieeiievie e, 21
TESE SEOUEBNCES ...t e ettt e e e e nae e e nee e 22
TeSt deSCHPLION ..eocvviiieeie e 23
Ranges in tests’ Parametersccovvvvereereereernesieeneesee e 24
Special Operators IN FANQGES........cueiiriieiieeieeree e ee e sree e 25
Empty Struct fieldS..........coveiieie e 25
SErUCt USAQGE 1N TEST...uveeiieceie et 25
Struct eXamples INTEST........oovi e 26
Set StruCt Variablecocveviiiece e 26
Set Variable fOr StrUCK........c.ocoveiie e 27
Automatic mode for running testS........ccccvvevievie i 28
REPOIS TOOIS.....ciieiiece e 29
VIBW 8D ..t ne e 29
(O g Fo T RS- Tod 1 o] o [SSTR 30
Project configuration with CTC Optionsccccevveevieeviiecviiee e, 31
Main ATS5 window with CTC featureccccocevevvvieeieieneeie e, 32
Lines' colors in method definition...........cccoovvieiii e, 33
Example of MC/DC dialog — plus Symbols.ccccccovviviiiiniennnnne, 34
Example of MC/DC dialog — minus symbols..c.cccevveiienne, 35
Importing/exporting buttons in class definition.c.cccccevienen. 36
Importing/exporting buttons in tests’ parameters section. 36
Simulation — Open SIMUDLL iN VS. ..o 37
SIMUDLL Configuration.cccooevirieninienienesee e 37
Toolbar additional fEAtUIES..........cccvivereiieiese e 38
FOrce SIMUEXE ClOSEccvveiieiie e 38
TOOIS AN .. ————— 39

45

Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.

Code Generator basiC BULEONccceiiieiiiiece e 40
Buttons for Scripts CONtrol..........cccevveiieiieiieee e 40
Scripts Control view in Code Generatorcccceevvvevveveesieesiesnnn 41
Basic button in Files Control............ccccovviiiiiiieisee s 42
Selecting file to import in Files Control..........ccccocvvvviiieiieiiniienns 42
Selecting particular files to include in Files Control........................ 43
Files Control view in Code Generator...........cccovoveveeieesneinieesieesienn 43

46

