

ATS 05.03.003.002

Basic Usage Manual

SCHLEISSHEIMER SOFT- UND HARDWAREENTWICKLUNG GMBH

 www.automation-testing-suite.com

 www.schleissheimer.com

2024

2

Contents

Chapter 1. Getting started ... 3

1.1. Project creation .. 4

1.2. Opening existing project .. 11

1.3. Removing project ... 12

1.4. Saving project .. 13

Chapter 2. Testing files ... 15

2.1. Building SimuDLL .. 15

2.2. Adding new test ... 17

2.3. Modifying a test ... 19

2.3.1. Sequences .. 23

2.3.2. Range values ... 25

2.3.3. Special operators ... 25

2.3.4. Structures usage in tests .. 26

2.3.5. Class objects usage in tests ... 29

2.3.6. Functions mocking .. 29

2.4. Running tests .. 32

2.4.1. Charts .. 35

2.4.2. MC/DC coverage .. 36

2.5. Importing/exporting tests ... 41

2.6. Modifying SimuDLL project ... 42

Chapter 3. Additional features of CPP Tests .. 43

3.1. ATS Reports ... 44

Chapter 4. Code Generator ... 45

4.1. Scripts Control ... 45

4.2. Files Control ... 46

List of Figures ... 49

3

Chapter 1. Getting started

 In this chapter, you will be introduced with activating the license, creating

new project and opening the existing one (also from a different device), as well

as saving it.

 First, run the application. On your screen, the License Tool window will

appear (Figure 1). You can import license by inputting the activation key (section

on the right side) or by using remote license parameters (on the left). After

successfully activating the license, application needs to be restarted.

Figure 1. License Tools

After restarting the application, you will need to select the particular

license, which you want to use. To do that, click it and then just click the button

„Select license”. Now, on your screen there will be showed a logging view. After

you log in, you can go further to Welcome Window (Figure 2).

4

Figure 2. Welcome Window

With this window, you are able to:

• open selected project,

• load project from file – it allows to open a project by manual selecting a

particular .ats5prj file,

• create new project,

• remove selected project from list,

• remove missing project – it removes a project from ATS recent projects

list, that is not existing anymore on your computer (for example a project

that has been deleted),

• change license – it shows the License Tools

• close application.

1.1. Project creation

 In the first step, select a place for your new project and type in the name.

It will be saved as .ats5prj file. After creating a project, this is how main view of

the application looks like (Figure 3).

5

Figure 3. Main View of ATS5.

Before you start having the files analyzed by ATS, please make sure, that

you have set a path to MSBuild and Cl.exe. To check this, go to Tools –

Configuration – Compilation tools, as showed on Figure 4. If the fields are empty,

use Suggest button to set them automatically. In case it does not happen

automatically, you will have to set it manually (choose a particular path to those

components or install them, if you have not done it yet).

Figure 4. Compilation Tools.

6

 Now, you can start analysing source files and creating tests. To choose files

for analysis, click the first left button on the Toolbar (or use CTRL + W keyboard

shortcut):

Figure 5. Importing files to CPP Tests.

 It will display a dialog window with such features, as showed on Figure 5.

In here, you can select:

• a way of importing files (by Visual Studio Solution/Project, by Project

Root Folder or by Source files),

• importing method (Replace existing stubs or Append to existing stubs),

• language standard,

• and also specify requirements prefix. Those requirements are

recognized from comments in loaded files and added to the list of

requirements (Fig. 6).

7

Figure 6. Requirements list.

Requirements can be also configured in Tools - Configuration –

Requirements (Fig. 7), where the prefix can be change or user can select/deselect

many requirements to add them (or not) to the analysis.

Figure 7. Requirements in Configuration.

If there are requirements in the files and the prefix had been set, they will

be presented in Test Report in form of the table (Fig. 8).

8

Figure 8. Requirements Summary table.

Requirements can also be added (with button “+”) or removed (with button

“-“) for a specific test (Fig. 9).

Figure 9. Tools for adding/removing requirements.

Removing causes that the given requirement will not be displayed in Test

Report and will be omitted in analysis. Adding is available when user want to add

existing requirement, which was removed or omitted.

 Going back to the dialog of importing files to analyse, in here you can also

set the path for selected files (if the import way is Visual Studio Solution/Project

9

or Project Root Folder) or select a method for adding files (if the import way is

Source Files). The options for that last case are Append new items to tree,

Override all items in the tree.

 Warning: since now, you are only able to parse files that are using basic

variable types. Any other types will cause and display errors.

 To describe and clarify the ways of importing files, please get familiar with

this information:

• Visual Studio Solution/Project – it allows to choose .sln or .vcxproj files,

so you can display files that are included in it.

• Project Root Folder – it allows to choose root folder from which files and

subfolders will be displayed for further analysis.

• Source Files – it allows to add source files which a user wants to have

displayed in tree section (right side of Figure 5). Adding source files is

available multiple times when „Add files” option is selected.

 Besides that, application allows to set additional includes path – it can be

done in two ways. The first method is to simply click the button on the right side

of the field and type in the paths, which you need. The second method is to click

the „…” button and select the output folders manually. By setting additional

includes path, you can specify paths to folders with files that are needed to be

included in analysis, and that are placed outside the project.

 By going „Next”, the application would show a selection section (Figure

10). In here please choose files, using checkboxes, that you would like to have in

your project.

10

Figure 10. Selection section in CPP Tests.

 The last step is to confirm all selected files. Click „Finish” to finalize the

process of importing files and to display them in a main view (Figure 11).

Figure 11. Main View of ATS5 with imported project.

11

1.2. Opening existing project

 If you already have created a project and now you would like to open it,

you can do that by:

• opening selected project from Recent projects list (Figure 12), or

• loading a project from a file.

Figure 12. Recent projects list in Welcome Window

In case of opening existing ATS project from different device, you will

need to adjust some paths to be able to use such project. Right after opening it,

on the screen appears warning box with information which paths needs to be

configured (Figure 13).

Figure 13. Warning Box - Configure project paths

Following the instructions, if you go to Tools – Configuration – C++

Project – Project section, you will notice some yellow triangles saying „This path

12

does not exist!”. Those errors occurs because loaded project has different paths

set (local paths from different device), so you have to adjust them to be set as

yours local paths. For SimuDll path this issue is easy to handle – you can click

Suggest button and it will automatically search and set correct path for SimuDll

project of this ATS project (Figure 14). However, to set project and solution path

you will have to search for correct files manually – press „…” buttons to open

browsing dialog and select correct paths.

Figure 14. Configuration - Configure project paths

When those paths are fixed, you can save configuration. When you rebuild

SimuDll some errors may occur, but those errors must be resolved manually in

SimuDll project.

1.3. Removing project

 If you have deleted a project, or moved it to other folder, you could see this

project as disabled element on the list (Figure 15). To remove that element, simply

select this project and then click the button „Remove missing project”.

13

Figure 15. Remove missing project in Welcome Window.

 In case you would like to remove a particular project from Recent projects

list, you can do this by selecting it and clicking „Remove selected project from

list”.

1.4. Saving project

 To save a project you can go to File and select „Save project” (if your intent

is to overwrite the existing project file) or „Save as” to save but simultaneously

create new project file. There are also dedicated keyboard shortcuts for both

actions.

Figure 16. File – Save options.

 Another way to save project is by using this button from Toolbar:

 A user can specify a saving method in Tools – Configuration – Database.

The options are: saving tests as JSON files or saving them in MongoDB database

14

(Figure 17). In this second case, it is required to have MongoDB software to save

tree in database.

Figure 17. Configuration - Database.

Firstly, user has to select the database (or create new one using “Add

database” button), and then specific database entry with a method of saving:

• append method causes adding new data to selected document,

• override method will overwrites selected document with latest

changes.

Figure 18. Configuration - Saving data to MongoDb.

15

Chapter 2. Testing files

 In this chapter, you will get to know how to build DLL, prepare your files

for analysis, create tests and how to run them.

2.1. Building SimuDLL

Now, when you have opened a project or created a new one, there is only

one more step to do before testing your files. This step is to build the DLL. It can

be done by clicking the third button on the left:

 However, before building it, you should decide whether you would like to

have it built with CTC enabled or not. If yes, go to the Code Coverage tab and

tick the checkbox „Build SimuDLL with CTC” (Figure 19).

Figure 19. Code Coverage tab.

 If you decided to build DLL with CTC enabled, you can set CTC options

in Tools - Configuration – CTC menu (Figure 20).

Figure 20. CTC Tools.

16

Last important step to take, is to make sure that all constuctors and

destructors are defined correctly.

Constructor and destructor methods are methods, which are used to create

and destroy objects of the class with tests. By default, these methods are defined

without any parameters, in the way showed on Figure 21.

Figure 21. Defining constructors with non-params.

However, in some cases there is a necessity to define them with parameters.

In such situations, if the application recognizes it, application will display an

information, as shown on Figure 22.

Figure 22. Information while recognizing constructor with parameters.

 Also if parsed testing project contains structure without defined default

constructor, ATS will recognize it and ask if user would like to create such default

constructors (see Fig. 23).

Figure 23. Create default constructurs for structures.

17

After all is set up, successful building the DLL will display a dialog with

confirmation (Figure 24). On the other hand, if something fails you will get errors

displayed in a log window at the bottom of application with details – what went

wrong.

Figure 24. Successfully built DLL notification.

After choosing files to analyze and compile the DLL now you are ready to

test them.

2.2. Adding new test

 Adding test to adapters (tree items named as class methods or global

functions) is possible in three ways.

 First one is to simply double-click on adapter (this option is available only

when adapter does not contain any tests yet). Second one is to use the second

button from the right side of a Toolbar „Add a new test to the method”:

 To create a test with above button, you have to select a target method first

– it will be added directly for this method.

 Third option is to use context menu on adapter by pressing right mouse

button on it (Figure 25). Please note, launching a context menu in Stubs viewer is

only possible when right-clicked on “Name” column area – invoking context

menu won’t work if it was done on “Result” column.

18

Figure 25. Adding tests via context menu.

Application allows you to rename test by double-clicking on it. Also, there

is a possibility to remove single/multiple tests or remove all tests from

method/class, duplicate it, add sibling test, take a snapshot of it, run it and reset

its results (Figure 26).

Figure 26. Additional options for test in Stubs Viewer

19

2.3. Modifying a test

 Clicking on test (tree item) shows a new window, that allows user to

specify values for input arguments of methods/functions as well as expected

return values (Figure 27).

Figure 27. Main View of ATS5 with added tests.

 Application allows user to input only parameters that are used in a specific

method/function. For example, for switchCaseFunction method, which returns

integer and its parameters could be also only integer numbers, there will be error

(marked as red background), if user tries to input other data types (Figure 28).

Figure 28. Setting wrong data type for a test parameter

20

Global variables can be added by selecting them from the expanding list

(Figure above). You can select many different global variables in single test but

once used global variable in input argument or expected value cannot be

duplicated.

To use a user variable, firstly you need to create it in the view of class

definition or while having selected any method/test of the class which you would

like to create user variable for. By default, user variables creation section is

located on the right side of ATS application just under Test Description (Figure

29). It is a docking widget so you can always undock this and place anywhere

else to let it be more comfortable to use.

Figure 29. Add user variable section

Press plus „+” button to create new user variable and specify name, type

and value for it, then push Enter to confirm your inputs. Removing already

21

created user variable is done after you select it from the list and then click minus

„-“ button. In case you create user variable with same name as already existing

global variable, application will recognize it as error and mark such variable on

red background.

When defining structure types for user variables, it is possible to select

which constructor should be used – it can be selected via combobox list. All

default constructors without parameters are named same as structure name

(without arguments in parenthesis) and all custom constructors with different

arguments are listed as well:

Figure 30. User variable structures constructor selection.

If some parametrized constructor was selected, user is able to define values

for structure fields – those values will be then automatically placed in the main

node of structure inside {} brackets.

Defining class objects variables is also done via selection in above

combobox element – user has to simply choose which class type should be used

for specific variable. For both structure and class objects variables it is allowed

to use pointers by changing selected type using “*” character at the end of the

22

expression. SimuDll needs to be rebuilt to allow usage of such created user

variables and to allow you to select them from combobox placed in the test

definition section (Figure 31).

Figure 31. User variables usage in test

Similarly to global variables, you can use multiple user variables in single

test, but they cannot be duplicated.

In tests, where a parameter can be a reference (e.g. int &), application

allows you to use only user (local) variables or global variables (Figure 32).

Figure 32. Reference to global variable in test’s parameter

If you declare user variable as a pointer, for example in this way: (type)

int* (name) ptr (value) nullptr, it can be then used in test’s parameters like this:

Figure 33. User variable as a pointer used in test’s parameter

23

There is also a possibility to use pointers in arguments that are not using

references. For example, you can define user variable as a pointer to integer and

then use it as a parameter in argument of int type – simply use *userVar or

userVar[0].

On the other hand, if you want to set value or set expected value of user

variable which is pointer type, you can only do that by typing ,,*” before

variable’s name or array index after name like ptrVar[0] (Figure 34).

Figure 34. Setting or getting pointer user variable

2.3.1. Sequences

 A particular test can be run in sequences. To add new sequence, click the

„+” button on the right side of the fields with test params (Figure 35). Also, you

can modify the amount of sequences by putting its length number in the textfield.

Figure 35. Test sequences

Each column „S1”, „S2” and so on, is a separated sequence. So for first

sequence of this test for input arguments were provided values: 2, 421, 33 and for

24

expected return value 22. Due to empty cells in second sequence, all values from

previous sequence (S1) will be extended also to second sequence. It means that

values for second sequence are exactly the same as for S1. You can notice that

value for b parameter has changed in third sequence to 34. So all other empty

cells will automatically expand values from previous sequence besides value for

b parameter. About expected return value, in above case it will always be equal

to 22 in each sequence.

 To sum it up, if you do not define parameters in the following sequences,

they will be automatically set as values of earlier defined parameters. Sequences

work the same also for global and user variables.

 In test, you can also add description, which will be displayed in generated

reports (Figure 36).

Figure 36. Test description

By default, this section is placed on the right side of ATS application under

Global Variables section, but it is a dockable widget so you can always dock it

anywhere else.

25

2.3.2. Range values

 ATS5 allows users to create tests with range values in parameters. Range

is specified as [min, max, step]. To use a range, you have to put your values

between square brackets „[” and „]”, with comas as separator for min and max

value and a step (which is optional, by default it will be set to 1). Ranges are

presented on Figure 34. Important information about ranges is that they differ for

return values. In such case, you can only specify [min, max] params (without

step). It means that return values specified in a range (e.g. [1,50]), will take every

value from that range as positively passed in a test (see expected return value in

sequence S2 of below example).

Figure 37. Ranges in tests’ parameters

 Another example – range specified as [5,10,2] will run test with given

values 5, 7, 9 – so there will be created 3 sequences additionally for purpose of

this range. If user will provide two ranges in separated parameters within single

sequence, application will combine them, using Cartesian product operation. It is

also possible to have range with a negative step. This requires putting a bigger

value as a minimum parameter than maximum parameter (e.g. [15, 2, -3] or [-5,

-1, 1]). As shown on Figure 34, after execution of this test, its result will passed

(the received return value is 2 for S1 and 4 for S2, so it passes both conditions).

2.3.3. Special operators

 Moreover, application allows you to use special operators for specifying

return value. Those operators are:

26

• „<” - values less than;

• „>” - values bigger than;

• „<=” - values less and equal to;

• „>=” - values bigger and equal to;

• „!” - negation (it means that user can expect every value except the ones

given in return range if exclamation mark was added);

• „*” - all values are correct.

Figure 38. Special operators in ranges

Usage of these special operators is presented on Figure 38. It is not allowed

to use those operators for input arguments, but for all expected return values (also

for global and user variables) it is completely correct.

2.3.4. Structures usage in tests

It is possible to use structures within tests and to define user variables of

such type. In ATS5 this test will be displayed and handled a little bit different

than regular test with primitive types (Figure 39).

Figure 39. Empty struct fields

As you can see, the general row of such structure shows what type is this,

and after filling out the values in the below cells, this general row will be updated

27

in real-time inside curly brackets {} with each value separated by a comma

(Figure 40).

Figure 40. Struct usage in test

There are some rules to follow while defining values of struct fields in a

test. Firstly, it is forbidden to use ranges as input arguments of struct – it is only

possible to use range as expected return value. When a test contains global

variable of struct type, it is forbidden to define its field with usage of user variable

as its value. But on the other hand, if user variable is used in a test and it is a struct

type, it is possible to use global variable as its value (Figure 41).

Figure 41. Struct examples in test

28

Additionally, user can set a value for current structure using option from

context menu „Set variable” (Figure 42).

Figure 42. Set struct variable

Set variable option will open a new dialog with list of all global and user

variables of the same type as currently selected struct (Figure 43).

Figure 43. Set Variable for struct

In case of pointers, it is possible to set an index. When variable is selected

and confirmed, the fields with values cannot be modified (Figure 42) – they

contain „-“ symbol. The only option to change it, is to restore the value by

selecting option from context menu „Restore default value”.

29

2.3.5. Class objects usage in tests

As it was mentioned before, it is possible to use class objects in tests – as

well as global or user variables (see Figure below) or input arguments/expected

return values in tests as well as class pointers.

Figure 44. Class objects usage in tests

To set argument as class object, it is required to use “Set variable” option

from right-click context menu opened on specific cell in sequence column.

2.3.6. Functions mocking

Mocking functionality is placed under a mock widget button placed in the

toolbar:

In this window there are listed all mock functions recognized from testing

project – in the parenthesis are defined classes which those mock functions are

involved in, and on the left side of the parenthesis is written the name of function

or method that mocked function is changed in:

30

Figure 45. Mock functions widget.

To use such mock function, user needs to accept the checkbox in column

“Enabled”. If function is not a void type, specify the appropriate return type in

code editor placed on right side after clicking on specific mock function. After

user has defined all mock functions, it is required to click “Save changes” to apply

this code edits. To run tests with mock functions usage, SimuDLL has to be

rebuilt first.

 If mock functions use some components from additional sources or

libraries, it is allowed to add includes which will exist in a file where mocked

functions are defined, by clicking on “Add include” button – then new window

will be displayed (Figure 46).

Figure 46. Additional includes for mock functions.

31

To add new include, type in the component and confirm with “+” button –

it will be then append to the list. Click “Save” to confirm the action and “OK” to

quit.

Below is an example of behavior for mocked function and created test –

originally it is supposed to return “1” value:

Figure 47. Original method definition before mocking.

but according to enabled toMock() function, the output will be different (see

Figure 49).

Figure 48. Example of mocked method.

The test output is “99” value instead of “1”:

Figure 49. Mock function result from test report.

32

2.4. Running tests

 After filling in all params that you need for your tests, now you can run

them. To start one selected test – click the button in Toolbar:

 If your mouse’s focus will be set to class or adapter, clicking Run Selected

Test will cause running all tests from the selected class/adapter. Running selected

test is also possible using context menu, after right-clicking tree item in the Stubs

Viewer. If you would like to run all created tests, simply use button :

or again – use a context menu.

To select many tests from different classes and to make them execute, user

can select particular checkboxes and then use the button to run them:

 There is also a possibility to execute all created tests with automatic mode

from command line. To have it done, open a command line from the folder with

ATS5.exe file. Then, type in the following instructions (Fig. 50):

ATS5.exe -i PATH

PATH is a path to your created .ats5prj file which includes tests, that user want

to execute. After running above command, ATS5 automatically generates HTML

reports for done tests.

Figure 50. Automatic mode for running tests

After running tests with methods described above, an informational dialog

will appear. It includes such information as: numbers of tests done correctly and

incorrectly, name of executed test, status of the test result (Passed/Failed), time

in which the test was performed. In case that some test is not executable (for

33

example due to incorrect data types in params), this dialog will also include that

information. Also, status of executed test is shown in column „Result” in the

Stubs Viewer tree.

 A view with the results of executed tests could be different – it depends on

configurations that were set in Tools. Settings concerning generating reports can

be checked in Tools – Configuration – Reports (Figure 51).

Figure 51. Reports Tools

 In here, you can choose paths for reports, as well as for other images, and

establish where they should be stored. By using checkboxes you can decide

whether to auto-generate a report after every test execution or not. There is plenty

of settings to choose, that will allow you to individualize ATS5.

34

 If you would like to always show charts after test execution, you will find

that option in a tab, called View. There is a checkbox „Enable charts”.

Figure 52. View tab

 After setting this on, every executed test will automatically show charts

with results.

 It is possible to disable specific classes or global functions from tests

execution – to do that, right-click on selected stub node (class or global function)

in Stubs viewer and select option “Disable class” or “Disable global function” –

it will make this element greyed out in the tree and all tests created for this stub

will not be executed, neither they will be added to test report. If there are already

some executed tests with results, all data will remain visible in the tree after this

class was disabled.

Figure 53. Disabled class in stubs viewer.

To restore elements again, just right-click on this stub in the tree and press

“Enable this class/global function”.

35

2.4.1. Charts

 Charts are presenting test’s results – they can be very simple or pretty

complicated, depending on given parameters value and number of sequences.

Charts consist of input arguments, expected return values for variables and actual

received return values.

Figure 54. Charts section

 In the middle part of the Charts widget, you can find generated chart, tools

for manipulating the chart and buttons for exporting the results. On the right side

of it, there is a table with parameters’ values. These values will be changing in

real-time when your mouse will be hovering points on the chart.

 The display tools consist of a button for resetting the view and three

checkboxes to turn on/off displaying cursor, errors and axis on the chart.

 The following two sections concerning axis X and axis Y include tools for

changing the scale of displayed chart – you can zoom it in or zoom it out. Also,

there is a slider for moving the graph to right or left (for X axis) and to up and

down (for Y axis). Moving the chart is also possible without the toolbar - in such

case user has to click and hold on the chart and then move the mouse in any

direction. In addition, zooming in and out the chart is allowed by using mouse

wheel (axis X) and using mouse wheel while holding SHIFT (axis Y).

 Furthermore, in the section called File, there are three buttons for exporting.

The first one is used to generate PNG file with the displayed chart, the second

one is used to export the results to CSV file, and the same happens, when user

clicks the last button, with the only difference that the file with results will be in

a format of JSON.

36

2.4.2. MC/DC coverage

As it was mentioned before, settings concerning CTC options can be

defined in Tools – CTC, but there are also some other important decisions to make,

when you would like to generate test report with MC/DC (Modified

Condition/Decision Coverage) coverage included. Those decisions can be made

in Tools – Project section (see Figure 55).

Figure 55. Project configuration with CTC options

The checkboxes in the bottom of the dialog allow you to decide whether

you would like to show CTC warning dialogs when executing tests and whether

you would like to keep connection with SimuDLL. The last one needs to be turned

off if user wants to generate CTC report, so if you would have this checkbox set

on and execute test, you will get a warning dialog about it.

To enable generating MC/DC report, go to Tools – CTC and select

„MC/DC coverage” in Code coverage report type. Furthermore, select which

37

type of report you would like to generate – TXT, XML or HTML report. Now, if

you save your configuration, you are ready to execute tests with MC/DC feature.

In the general overview (Figure 56), when CTC option is set on, there are

added some new features, such as:

• In the Stubs’ viewer (on the left side of the screen below in the yellow

frame) there is added a new column „Coverage” which displays the

percentage of code coverage. If it shows 100% it means that all lines of the

code have been tested.

• Coloring the lines (Fig. 57) – in the method’s definition on the right side

(yellow frame), the colors of the lines have different meanings.

Explanation of them will be given under this below figure.

Figure 56. Main ATS5 window with CTC feature

Line which is marked:

• green – means that this line was used and executed during the test,

• yellow – means that there was MC/DC recognized in this line,

• red – means that this line of code has not been executed and used during

the test (the conditions were false, so the program did not go inside the

lines).

38

Figure 57. Lines' colors in method definition

To open MC/DC details dialog, click the yellow line’s number (it is

underscored) in method’s definition. It has 3 main sections (Figure 58) – on the

top of the MC/DC dialog there is located analyzed condition from already

executed test. Then, there is a table with all the conditions listed and their actual

amount of execution – so value ‘5’ in the first row of True column means that

this condition was obtained 5 times and of course was successful (the result of

True && True is always True). In the second row you can see that this condition

was obtained and executed only once, and its result is False.

Underscore (“_”) in the „Condition” column means any boolean value

(True/False) as this value will not affect the result anyway.

The last section of this dialog is the description. It shows if the current

condition (leaf-level Boolean expression) is independent from other conditions’

results. The independence of a condition concerns that only one condition

changes at a time. The symbol plus (“+”) or minus (“-“) placed between

conditions’ numbers in the description, indicates which pair of conditions were

39

achieved (plus) and which were not (minus). If there is at least one pair with plus,

it means MC/DC was fulfilled.

Figure 58. Example of MC/DC dialog – plus symbols.

Interpretation for above example can be: to check the condition’s

independence, there needs to be executed a pair of condition 1 (True AND True)

and 3 (False AND _), and also a pair of 1 and 2 – and they all have already been

achieved. In other words:

• The first condition (T && T) and the third condition (F && _) demonstrate

that ‘a < b’ can independently affect the outcome decision.

• The first condition (T && T) and the second condition (T && F)

demonstrate that ‘b > c’ can independently affect the outcome decision.

Let’s have a look at opposite situation with minuses (Figure 59).

40

Figure 59. Example of MC/DC dialog – minus symbols..

Example description interpretation for above is – to check independence of

the condition there is a need to execute:

• The first condition (T || (_ && _)) and the third condition (F || (T && F))

or the first condition and the fourth condition (F || (F && _)). They all

demonstrate that ‘a’ (from analyzed expression) can independently affect

the outcome decision.

• The second condition (F || (T && T)) and the fourth condition (F || (F &&

_)). They all demonstrate that ‘b’ (from analyzed expression) can

independently affect the outcome decision.

• The second condition (F || (T && T)) and the third condition (F || (T &&

F)). They all demonstrate that ‘c’ (from analyzed expression) can

independently affect the outcome decision.

41

2.5. Importing/exporting tests

 Application allows you to import ready tests (in a format of .JSON files)

to the project. It can be done by right-clicking a class or method in Stubs viewer

and selecting the option „Import method tests”/ „Import tests for the whole tree”.

Other way to import tests is to select a button „...”, that is placed next to Sequence

Length in tests parameters field or in class/method definition.

Figure 60. Importing/exporting buttons in class definition.

 Exporting tests is equally simple – you can find this option in context menu

of tree items or – after selected a specific test – export it via button, placed next

to Sequence Length. As you can see, application allows you to export tests as

CSV and also as JSON files.

Figure 61. Importing/exporting buttons in tests’ parameters section.

The difference between importing/exporting files in format of JSON or

CSV, is that while using .JSON files, the test is imported as a new test, and

exported test is also exported as a whole element. Importing by CSV file will

cause loading only tests’ values, and exporting as CSV file will save only tests’

values.

42

2.6. Modifying SimuDLL project

In case there will appear any error during SimuDLL project compilation,

user can open SimuDLL project via ATS application by clicking Simulation menu,

then „Open SimuDLL project in Visual Studio”. After that, .vcxproj file

containing SimuDLL will be opened.

Figure 62. Simulation – Open SimuDLL in VS.

Proper SimuDLL project configuration looks like this:

Figure 63. SimuDLL Configuration.

Most important is to specify „Platform Toolset” to „Visual Studio 2022

(v143)”. Otherwise, there may appear errors during compilation. One of the

common errors that appear (if „Platform Toolset” is not specified) is that our

application cannot find included system headers in files that we are trying to

analyse.

43

Chapter 3. Additional features of CPP Tests

 Besides main features that were described before, ATS5 has some other

functionalities. On the Figure 64 there are buttons marked in red, yellow, green

and blue.

Figure 64. Toolbar additional features

Button in blue frame concerns refreshing project files. It will work, if the

application finds any changes in files, that user is currently using in a project (in .h

or .cpp files). After clicking the button, if there had been any changes made to the

files, the application will update them, remaining all the created tests by user.

Buttons in red area are related to increasing/decreasing font size for

constructor and destructor methods’ definitions.

 Buttons in yellow frame concern generating CTC and ATS reports.

 Button in green frame concern adding new test for selected method/global

function.

In case of a problem with executing tests, you can force SimuDLL to close.

To do that, go to Simulation – Force SimuExe close (Figure 65).

Figure 65. Force SimuExe close

Additionally, in Tools tab, you can find an option called „Load original

source”. It is used for restoring imported file to its original version – without any

44

added tests, variables or snapshots. Snapshots are used to make shots of a test,

which cannot be modified but they can be used to restore its values.

Figure 66. Tools tab

3.1. ATS Reports

 Those reports are generated as HTML file. They include Table of contents

in the top of the page, then the titles of classes that contain done tests, names of

the methods with their test results and their definition titled as Function Code.

Optionally there could be included comments section. In the middle and

the bottom of the page there is a chart with a legend of params, and below that

the report includes a table with the values.

Figure 67. Report example.

45

Chapter 4. Code Generator

Code Generator is a functionality that allows you to load JavaScript files,

modify them, create new one, and then use them to generate dynamic code

between customizable tags in .hpp, .cpp and .h files.

Figure 68. Code Generator basic button

In Code Generator tab, there are 3 basic buttons. The first on the left is used

to run all JS scripts, loaded to a project. The second in the middle is used to save

single, selected script. And the last one saves all created or modified scripts.

4.1. Scripts Control

In this tab you are able to load existing JS scripts and open them in

application (Figure 69). To load scripts from your computer, click Add button. To

create new JavaScript script, select Create.

Figure 69. Buttons for Scripts Control

If you would like to remove loaded .js file from the Script list, select

checkbox near desired item and then click Remove button – please note, it will

remove all elements which have set checkboxes to true. All scripts on a list will

46

be executed in ascending order (from 1 to n). Down and up arrows buttons allow

you to place particular .js file lower or higher on a list, which will cause changes

in scripts execution order.

Besides removing actions, checkboxes are used also to enable or disable

which files from the list should be executed while running the scripts – if you do

not want some script to be executed but you want to save it on a list, simply

uncheck the box. In this case, it will not be executed.

The blue circle (Figure 70) placed near the name of a file means that this

file has been changed and stays unsaved. It will disappear after saving the script.

Going further, in the middle of the screen (Figure 70) there is a modifiable

field with JS code. You can add commands from Available commands list, which

is placed on the right side – just click the line and area, where you would like to

have the command inserted and double-click the needed item from the list.

Figure 70. Scripts Control view in Code Generator

To sum up, by modifying JS files there is a possibility to interact with all

the selected files and generate code from custom templates (by tags).

4.2. Files Control

 Files Control basic buttons are used for importing files to the project,

adding new, single files or removing the selected one (Figure 70). Files to import

can be selected from Visual Studio projects or added separately by user.

47

By using add button, you can add .h, .cpp or .hpp files to the project.

Remove button allows to delete checked files.

In the tree with imported files, you can find output path and a button „…”

that allows you to manually specify an output path for JS methods (InsertCode,

ReplaceCode). When these methods will make any changes to the files, those

changes will be saved just in this output path. It is set by default to the path of the

imported file.

Yellow triangle with an exclamation mark inside informs about warning –

a file cannot be found.

Figure 71. Basic button in Files Control

Clicking Import files button opens new window with selecting VCXProj

file.

Figure 72. Selecting file to import in Files Control

48

By going „Next”, there is a window that allows you to choose files, that

you would like to include in a project (Figure 73) – you can select single elements

or whole folders. To include them, select the item and click the right arrow. It

will move the content of the selected item to the right side „included files”.

Figure 73. Selecting particular files to include in Files Control

At the end of the importing process there should be displayed a window

with information that the importing was successful. Such imported files will be

displayed in a tree and selecting one of its items displays the code of the file in

the field on the left (Figure 74).

Figure 74. Files Control view in Code Generator

49

List of Figures

Figure 1. License Tools.. 3

Figure 2. Welcome Window .. 4

Figure 3. Main View of ATS5. .. 5

Figure 4. Compilation Tools. ... 5

Figure 5. Importing files to CPP Tests... 6

Figure 6. Requirements list. ... 7

Figure 7. Requirements in Configuration. ... 7

Figure 8. Requirements Summary table... 8

Figure 9. Tools for adding/removing requirements. .. 8

Figure 10. Selection section in CPP Tests. .. 10

Figure 11. Main View of ATS5 with imported project. .. 10

Figure 12. Recent projects list in Welcome Window .. 11

Figure 13. Warning Box - Configure project paths ... 11

Figure 14. Configuration - Configure project paths... 12

Figure 15. Remove missing project in Welcome Window. ... 13

Figure 16. File – Save options. .. 13

Figure 17. Configuration - Database. ... 14

Figure 18. Configuration - Saving data to MongoDb. ... 14

Figure 19. Code Coverage tab. .. 15

Figure 20. CTC Tools. ... 15

Figure 21. Defining constructors with non-params. .. 16

Figure 22. Information while recognizing constructor with parameters.................................. 16

Figure 23. Create default constructurs for structures. .. 16

Figure 24. Successfully built DLL notification. .. 17

Figure 25. Adding tests via context menu. .. 18

Figure 26. Additional options for test in Stubs Viewer ... 18

Figure 27. Main View of ATS5 with added tests. ... 19

Figure 28. Setting wrong data type for a test parameter .. 19

Figure 29. Add user variable section ... 20

Figure 30. User variable structures constructor selection. ... 21

Figure 31. User variables usage in test .. 22

Figure 32. Reference to global variable in test’s parameter ... 22

50

Figure 33. User variable as a pointer used in test’s parameter .. 22

Figure 34. Setting or getting pointer user variable .. 23

Figure 35. Test sequences .. 23

Figure 36. Test description .. 24

Figure 37. Ranges in tests’ parameters .. 25

Figure 38. Special operators in ranges ... 26

Figure 39. Empty struct fields .. 26

Figure 40. Struct usage in test .. 27

Figure 41. Struct examples in test .. 27

Figure 42. Set struct variable ... 28

Figure 43. Set Variable for struct ... 28

Figure 44. Class objects usage in tests ... 29

Figure 45. Mock functions widget. .. 30

Figure 46. Additional includes for mock functions. .. 30

Figure 47. Original method definition before mocking. .. 31

Figure 48. Example of mocked method. .. 31

Figure 49. Mock function result from test report. .. 31

Figure 50. Automatic mode for running tests .. 32

Figure 51. Reports Tools.. 33

Figure 52. View tab.. 34

Figure 53. Disabled class in stubs viewer. ... 34

Figure 54. Charts section ... 35

Figure 55. Project configuration with CTC options... 36

Figure 56. Main ATS5 window with CTC feature .. 37

Figure 57. Lines' colors in method definition .. 38

Figure 58. Example of MC/DC dialog – plus symbols. ... 39

Figure 59. Example of MC/DC dialog – minus symbols.. .. 40

Figure 60. Importing/exporting buttons in class definition. .. 41

Figure 61. Importing/exporting buttons in tests’ parameters section. 41

Figure 62. Simulation – Open SimuDLL in VS. ... 42

Figure 63. SimuDLL Configuration. ... 42

Figure 64. Toolbar additional features ... 43

Figure 65. Force SimuExe close .. 43

Figure 66. Tools tab ... 44

51

Figure 67. Report example. .. 44

Figure 68. Code Generator basic button .. 45

Figure 69. Buttons for Scripts Control ... 45

Figure 70. Scripts Control view in Code Generator .. 46

Figure 71. Basic button in Files Control .. 47

Figure 72. Selecting file to import in Files Control ... 47

Figure 73. Selecting particular files to include in Files Control .. 48

Figure 74. Files Control view in Code Generator .. 48

