Automation & Testing Suite
for embedded software | AUTOSAR-compatible

ATS 05.03.003.002

Basic Usage Manual

SCHLEISSHEIMER SOFT- UND HARDWAREENTWICKLUNG GMBH

www.automation-testing-suite.com H.-1. SchieiBheimer

i i t- ured Harel
www.schleissheimer.com ot Horchuoss

2024

Contents

Chapter 1. Getting Startedccvivieeiecee e 3
I o (o [= o Aol 1= £] TSR 4
1.2. Opening exXiSting PrOJECT........ccveiieiiriie e 11
1.3. REMOVING PrOJECT.....cciviiiiieiieeie ettt 12
ST (Y [0 To [o] (] <o SRS 13

Chapter 2. TeStiNG fIleScceeiieieceee s 15
2.1. BUIlAING SIMUDLLoviiiieie et 15
2.2. AAAING NEW TEST ...eeiieciiece e 17
2.3. MOdIfYING @ tEST....eeiieiie e 19

2.3. 1. SEOUEBNCES.....ueieiiiiieiitie e ettt et e st e et e e e et e e s arba e e e snane e e e 23
2.3.2. RANGE VAIUEBS ...ttt 25
2.3.3. SPECial OPEIaAtOrS.....ceiivecieccieecee e 25
2.3.4. Structures Usage iN TeStS......cccuevvevieiie e 26
2.3.5. Class objects usage in teStS.......ccvvvrrveiierieniie e 29
2.3.6. FUNCLIONS MOCKING......ccviiiiieiiieiiiecie e 29
2.4, RUNNING TESTS....veitieitie sttt see ettt et sneesnee e 32
2.4.1. CNAITS ..ottt nenneas 35
2.4.2. MC/DC COVEIAQE ...cvveiiveeieeiteecteesieeseeesteesie e e e sae et 36
2.5. Importing/exporting tEStScuuiiiieriiie e 41
2.6. Modifying SIMUDLL ProjeCt.......ccccevviiiiiiiienieie e 42

Chapter 3. Additional features of CPP TeStS.......ccccevveviiriiiiieesee e 43
3.1 ATS REPOIS. ..ot 44

Chapter 4. Code GENEIALONccveiiiie e e nnees 45
4.1, SCrIPLS CONLIOL ...t 45
4.2, FileS CONLIOl........oooiiiiei et 46

LIST OF FIQUIES ..ottt ettt sttt s 49

Chapter 1. Getting started

In this chapter, you will be introduced with activating the license, creating
new project and opening the existing one (also from a different device), as well
as saving it.

First, run the application. On your screen, the License Tool window will
appear (Figure 1). You can import license by inputting the activation key (section
on the right side) or by using remote license parameters (on the left). After

successfully activating the license, application needs to be restarted.

Figure 1. License Tools

License Tools X

License List

Product name License key Type Support Basic Code Coverage Enabled in VM
ATS Basic(Local) 2 Perpetual

Refresh

Remcte License Search Parameters License Update

Input new activation key

|Brsrsese-sasr-reer-1ens |

Accept Cancel | Activate ‘

If you want to apply for a Demo license just fil in the request form on hitps: fvew.u

After restarting the application, you will need to select the particular
license, which you want to use. To do that, click it and then just click the button
,»oelect license”. Now, on your screen there will be showed a logging view. After
you log in, you can go further to Welcome Window (Figure 2).

Figure 2. Welcome Window

Welcome to Automation & Testing Suite

Load project from file

Create new project

Change license

Close

With this window, you are able to:

open selected project,

¢ |oad project from file — it allows to open a project by manual selecting a
particular .ats5prj file,

e create new project,

e remove selected project from list,

e remove missing project — it removes a project from ATS recent projects
list, that is not existing anymore on your computer (for example a project
that has been deleted),

e change license — it shows the License Tools

e close application.

1.1. Project creation

In the first step, select a place for your new project and type in the name.
It will be saved as .atsbprj file. After creating a project, this is how main view of

the application looks like (Figure 3).

Figure 3. Main View of ATS5.

jectatsspg®

G DpiL ke Sty MM B B P

Subs

Name Resull

Before you start having the files analyzed by ATS, please make sure, that
you have set a path to MSBuild and Cl.exe. To check this, go to Tools —
Configuration — Compilation tools, as showed on Figure 4. If the fields are empty,
use Suggest button to set them automatically. In case it does not happen

automatically, you will have to set it manually (choose a particular path to those

components or install them, if you have not done it yet).

Figure 4. Compilation Tools.

@ Configuration - Compilation tools

Compilation tools

General

Company

¥ C++ Project
Project
Database
CTC
Reports
Requirements
Code Generator

~ Application MsBuild.exe | C:/Program Files/Microsoft Visual Studio/2022/Community MSBuild /Current/Bin/amds4/MSBuild. e

Appearance Cl.exe C: /Program FilesMicrosoft Visual Studiof/2022/Community /VC/Tools/MSVC/14. 33.31629 /bin/Hos{

Save configuration

Suggest

Suggest

Cancel

Now, you can start analysing source files and creating tests. To choose files
for analysis, click the first left button on the Toolbar (or use CTRL + W keyboard
shortcut): !f;t:

Figure 5. Importing files to CPP Tests.

& ATSS X & ATS5 X
Import files for testing Import files for testing
Import: Source Files v Import: Visual Studio Solution/Project =
Add filas: Append new items to tree ot Path:
Import method: Replace existing stubs =
Import method: Replace existing stubs x

Additional includes path:
Additional includes path:

Select language standard: c++14 (default) v
Select | tandard: 14 (default] v

Requirements prefix |REQ_TEST| elect language standar c++14 (default)

Please note, that after analysis of files is finished the project will be automatically saved Requirements prefix

Remember to make sure that database configuration is properly set (chosen overwrite or

- Please note, that after analysis of files is finished the project will be automatically saved.
append option) so it won't overwrite already saved data!

Remember to make sure database configuration is properly set (chosen overwrite or
verwrite already saved data!

Selected source files tree: append option) so it won't

v
v

CEC

| MNext = | Cancel Cancel

It will display a dialog window with such features, as showed on Figure 5.
In here, you can select:

e away of importing files (by Visual Studio Solution/Project, by Project
Root Folder or by Source files),

e importing method (Replace existing stubs or Append to existing stubs),

e language standard,

e and also specify requirements prefix. Those requirements are
recognized from comments in loaded files and added to the list of
requirements (Fig. 6).

Figure 6. Requirements list.

Requirements list — O *
Include in rapert Requirement
v RECQ_INCLUDE1
v REC_INCLUDEZ2
REC_INCLUDE3
REC_INCLUDE4
«
v REC_INCLUDEG
v REC_INCLUDET
v REC_INCLUDES

Requirements can be also configured in Tools - Configuration —
Requirements (Fig. 7), where the prefix can be change or user can select/deselect

many requirements to add them (or not) to the analysis.

Figure 7. Requirements in Configuration.

Configuration - Requirements x
Type to find Requirements
™ Application Prefix of requirements |REQ_INCLUDE Requirements list
General
Compilation tools
Appearance
Company
* C++ Project
Project
Database
CTC

Reports

q
Code Generator

Save configuration Cancel

If there are requirements in the files and the prefix had been set, they will
be presented in Test Report in form of the table (Fig. 8).

Figure 8. Requirements Summary table.

addFloat_Test1

Result:

Function Code
1 float ATS CppTestingPrj::addFloat(float a, floa)
2

3 return a + b;
4}

ma Ob mretRov @retEr O ErorPoints M Axis Y W Axis X

32.00
24.00
16.00
8.00
0.00
0.0 20
Sequence step
Category Type Name
1 2
Parameter float a 1 2
Parameter float b 1" 2
Expected retum float - 22 4
Value returned float - 22 4

Requirements Coverage

Requirements Summary table

Reguirement name Coverage (%) Test name Test status

REQ_INCLUDE1 100.00% addFloat_Test1

Requirements can also be added (with button “+””) or removed (with button

“+) for a specific test (Fig. 9).

Figure 9. Tools for adding/removing requirements.

Test Requirements
ATS_CppTestingPrj : switchCaseFunction : switchCaseFunction_Test] Sequence Length | 1

Name Type 51 REQ TEST1
- Input argumencs
a ine
: .
c
xpec

Global Variables

Type

Removing causes that the given requirement will not be displayed in Test
Report and will be omitted in analysis. Adding is available when user want to add

existing requirement, which was removed or omitted.

Going back to the dialog of importing files to analyse, in here you can also

set the path for selected files (if the import way is Visual Studio Solution/Project

or Project Root Folder) or select a method for adding files (if the import way is
Source Files). The options for that last case are Append new items to tree,

Override all items in the tree.

Warning: since now, you are only able to parse files that are using basic

variable types. Any other types will cause and display errors.

To describe and clarify the ways of importing files, please get familiar with

this information:

¢ Visual Studio Solution/Project — it allows to choose .sIn or .vexproj files,
so you can display files that are included in it.

e Project Root Folder — it allows to choose root folder from which files and
subfolders will be displayed for further analysis.

e Source Files — it allows to add source files which a user wants to have
displayed in tree section (right side of Figure 5). Adding source files is

available multiple times when ,, Add files ” option is selected.

Besides that, application allows to set additional includes path — it can be
done in two ways. The first method is to simply click the button on the right side
of the field and type in the paths, which you need. The second method is to click
the ,,...” button and select the output folders manually. By setting additional
includes path, you can specify paths to folders with files that are needed to be
included in analysis, and that are placed outside the project.

By going ,,Next”, the application would show a selection section (Figure
10). In here please choose files, using checkboxes, that you would like to have in

your project.

Figure 10. Selection section in CPP Tests.

& ATSS x

Select files

Select files

v [|E| -
> |

ATS_CinTests.h

ATS_ClassDisabledConstructor.h

ATS_ClassDisabledConstructorWorkingParam.h

AT5_CPPTesting_Mested.h

AT5_CppTestingPrj.h

ATSTESTCLANG.h

ClassWithRefsToPrimitives.h

globalFun.h

< &llellellellallalle
[ER R EPR EP N P N EP R ER R E

AT5_CinTests.cpp
AT5_ClassDisabledConstructor.cpp
AT5_ClassDisabledConstructorWorkingParam.cpp
AT5_CppTestingPrj.cpp

Jele =
A

< Back Mext = Cancel

The last step is to confirm all selected files. Click ,,Finish” to finalize the

process of importing files and to display them in a main view (Figure 11).

Figure 11. Main View of ATS5 with imported project.

¢ i - 0 X

Code Generator

® Qo M TVAMME D o

Name Result
+ (@) ATS_CinTests
+) ATS_ClassDisabledConstructor
+ () ATS_ClassDisabledConstruc
+ (3 ClassinAdationalincludeDire.
+ (3) ATS_CppTestingPr|
+ (@) ATS_CppTestingPri_1
ATS_Sh

+ () ATS_StructPointer

» () ATSTESTCLANG

» @) toCheck

+ () toCheckSec
i

R test
» [3] Globsl Functions

10

1.2. Opening existing project

If you already have created a project and now you would like to open it,
you can do that by:
e opening selected project from Recent projects list (Figure 12), or

¢ |oading a project from a file.

Figure 12. Recent projects list in Welcome Window

@ Welcome — *

Welcome to Automation & Testing Suite

Recent projects:
_ —
Load project from file

Create new project

Remove selected
project from list

Change license

Close

In case of opening existing ATS project from different device, you will
need to adjust some paths to be able to use such project. Right after opening it,
on the screen appears warning box with information which paths needs to be

configured (Figure 13).

Figure 13. Warning Box - Configure project paths
@ Warning X

Solution path is invalid. Project path is invalid. Please, update
(* pathsin Tools -> Configuration -> C++ Project -> Project.

Following the instructions, if you go to Tools — Configuration — C++

Project — Project section, you will notice some yellow triangles saying ,,This path

11

does not exist!”. Those errors occurs because loaded project has different paths
set (local paths from different device), so you have to adjust them to be set as
yours local paths. For SimuDI| path this issue is easy to handle — you can click
Suggest button and it will automatically search and set correct path for SimuDlII
project of this ATS project (Figure 14). However, to set project and solution path
you will have to search for correct files manually — press ,,...” buttons to open

browsing dialog and select correct paths.

Figure 14. Configuration - Configure project paths

el i3e

@ Configuration - Project X

| v pe to find Project

v App(l}lcatlor; Solution to test | C:\Projects\ats5\Testing\ATS_CPPProjectTesting\ATS_CPPProjectTesting.sln 1
enera

Compilation to... This path does not exist!

Appearance Project to test C:\Projects\ats5\Testing\ATS_CPPProjectTesting\ATS_CPPProjectTesting\ATS_CPPProjectTesting /1
Company
v (++ Project Testing project configuration
Database Release ® Debug
(@re
Reports SimuDlix64 path | C:\Users\Test\Downloads\project\Bin\SimuDIx64CPP\Debug\SimuDIlx64CPP.dlIl] Suggest
Requirements
Code Generator - [a
]
i
Project tree D"
=
i

V| Keep SimuDIl connected

V| Show CTC warning before tests

Save configuration Cancel

When those paths are fixed, you can save configuration. When you rebuild
SimuDIl some errors may occur, but those errors must be resolved manually in

SimuDII project.

1.3. Removing project

If you have deleted a project, or moved it to other folder, you could see this
project as disabled element on the list (Figure 15). To remove that element, simply

select this project and then click the button ,,Remove missing project”.

12

Figure 15. Remove missing project in Welcome Window.

Welcome — x

Welcome to Automation & Testing Suite

Recent projects:

_ —
Load project from file

Create new project

Remove selected
project from list

Change license

Close

In case you would like to remove a particular project from Recent projects
list, you can do this by selecting it and clicking ,,Remove selected project from

list”.
1.4. Saving project

To save a project you can go to File and select ,,Save project” (if your intent
is to overwrite the existing project file) or ,,Save as” to save but simultaneously
create new project file. There are also dedicated keyboard shortcuts for both

actions.

Figure 16. File — Save options.

@ Simulation Code Coverage View Tools Help
% MNew project Alt+M
éLoadprnject

& Save Project

i) Save as Ctrl+Alt+Shift+5

() Exit

Another way to save project is by using this button from Toolbar: E_@
A user can specify a saving method in Tools — Configuration — Database.

The options are: saving tests as JSON files or saving them in MongoDB database

13

(Figure 17). In this second case, it is required to have MongoDB software to save
tree in database.

Figure 17. Configuration - Database.

L2

Type to find Database

v Application Save method
General
Compilation tools
Appearance
Company ®) Save to file

¥ C++ Project
Project
Database
CT1C
Reports
Requirements
Code Generator

MongoDb

Database file C:\Users\Test\Desktop\TestProject\db

Firstly, user has to select the database (or create new one using “Add
database” button), and then specific database entry with a method of saving:
e append method causes adding new data to selected document,

e override method will overwrites selected document with latest
changes.

Figure 18. Configuration - Saving data to MongoDb.

Configuration - Database

Type to find Database
~ Application Save method
General
Compilation tools ©) MongoDb
Appearance
Company Save to file
¥ C++ Project
Project
Database URI mongodb://localhost:27017
CTC
Reports
Requirements Database name TestDB > Add database
Code Generator
Database entry (Username, Date) Test - Man, 09 Sep 2024 08:12:07 v

Method of saving database

®) Append Override

Save configuration ‘ Cancel

14

Chapter 2. Testing files

In this chapter, you will get to know how to build DLL, prepare your files

for analysis, create tests and how to run them.

2.1. Building SimuDLL

Now, when you have opened a project or created a new one, there is only

one more step to do before testing your files. This step is to build the DLL. It can

be done by clicking the third button on the left: s

DL

However, before building it, you should decide whether you would like to

have it built with CTC enabled or not. If yes, go to the Code Coverage tab and
tick the checkbox ,,Build SimuDLL with CTC” (Figure 19).

Figure 19. Code Coverage tab.
File Simulation View Tools Help

CPP Tests q M Build SimuDll with CTC

f= - Append coverage results
/”: a I (%) Reset coverage results

If you decided to build DLL with CTC enabled, you can set CTC options
in Tools - Configuration — CTC menu (Figure 20).

Figure 20. CTC Tools.

& Configuration - CTC X

crc

~ Application Code coverage report type
General
Compilation tools ®) Statement coverage Dedision/Branch coverage MC/DC coverage
Appearance
Company
¥ C++ Project CTC report generation
Project
Database
Reports Generate XML report Auto-open after generation
Requirements

Code Generator Generate HTML report Auto-open after generation

Generate TXT report Auto-open after generation

Source code editor coloring option

® Accurate Expanded

CTC additional options

Analyse header files

CTC report threshold 100 | %

Save configuration Cancel

15

Last important step to take, is to make sure that all constuctors and

destructors are defined correctly.

Constructor and destructor methods are methods, which are used to create
and destroy objects of the class with tests. By default, these methods are defined

without any parameters, in the way showed on Figure 21.

Figure 21. Defining constructors with non-params.

ATS_CppTestingPrj : Construct

1 ATS CppTestingPrj::construct()

2

3 this->object = new ATS CppTestingPrj():
4}

However, in some cases there is a necessity to define them with parameters.
In such situations, if the application recognizes it, application will display an

information, as shown on Figure 22.

Figure 22. Information while recognizing constructor with parameters.

Stubs viewer & ATS_ClassDisabledConstructor : Constructor

1 ATS_ClassDisahledConstructor: :constructor ()
Name Result 24
v (5 ATS_CinTests 2
- @ ATS_ClassDisabledConstructor

4
5
:
:
8

Destructor
add
add?

Also if parsed testing project contains structure without defined default
constructor, ATS will recognize it and ask if user would like to create such default
constructors (see Fig. 23).

Figure 23. Create default constructurs for structures.
i X | & Missing default constructors X

Some errors occured while parsing files. Do you want 1o continue?
Some structures don't have default constructors.

Structure type “Testowa® doesn't have default constructor ! This may lead to errors of building SimuDLL.

Would you like to add default constructors?

16

After all is set up, successful building the DLL will display a dialog with
confirmation (Figure 24). On the other hand, if something fails you will get errors
displayed in a log window at the bottom of application with details — what went

wrong.

Figure 24. Successfully built DLL notification.

& Info >

o 2022-03-1512:24:02 SimuDllx64 project compilation successful!

Lok |

After choosing files to analyze and compile the DLL now you are ready to

test them.

2.2. Adding new test

Adding test to adapters (tree items named as class methods or global
functions) is possible in three ways.
First one is to simply double-click on adapter (this option is available only

when adapter does not contain any tests yet). Second one is to use the second
(m]

button from the right side of a Toolbar ,,Add a new test to the method”: ['E|
m]
To create a test with above button, you have to select a target method first

— it will be added directly for this method.

Third option is to use context menu on adapter by pressing right mouse
button on it (Figure 25). Please note, launching a context menu in Stubs viewer is
only possible when right-clicked on “Name” column area — invoking context

menu won’t work i1f it was done on “Result” column.

17

Figure 25. Adding tests via context menu.

Stubs viewer =

MName Result 3
- (& ATS CppTestingPrj
Constructor
Destructor
add Test1 Run all tests
% add_
& add_Test2 Run all method tests
= |} switchCaseFunction
+ switchCaseFun
- |} switchCaseFunction2
+ switchCaseFung Remave all method tests
adduint
= |} addDouble

Reset all tests’ results

Import method tests (*json)

A addDouble Test Import tests for the whole tree (*json)
| addFloat Export method tests (*,json)
- |} testA

Export all tests (*,)
4 testA Testl port all tests (*json)

= |3 badArrayNewlengthEx Expand whole tree
+ badArrayNewle Collapse whaole tree
= |} unhandledException
+ unhandledExcef
= |b} getExtendedMame Collapse adapter
+ getExtendedName... -

Expand adapter

Application allows you to rename test by double-clicking on it. Also, there
IS a possibility to remove single/multiple tests or remove all tests from

method/class, duplicate it, add sibling test, take a snapshot of it, run it and reset

its results (Figure 26).

Figure 26. Additional options for test in Stubs Viewer

Stubs viewer

Name
- [} ATS_CppTestingPrj
Constructor
Destructor
= |53 add
- add_Test1
24.09.18 08:30:54
add_Test2
B add Test1i
- switchCaseFunction
switchCaseFunction_Test
- switchCaseFunction2
switchCaseFunction2_Te
adduint
= [©] addDouble
addDouble_Test1
addFloat
- testA

testA_Test1
- badArrayNewlengthException
badAmrayNewlengthExce

- unhandledException
unhandledException_Tesi
- [©] getExtendedName
getExtendedName_Test1
changeGlobalVar
L7 returnPtr
retumnPtr_Test1

Result

Run all tests

Run selected test

Add sibling test

Remove test

Remaove all method tests
Duplicate test

Take a snapshot

Reset all tests' results
Impart test (*.json)
Import tests for the whole tree ("json)
Export test (*json)
Export all tests (*.json)
Expand whole tree

Collapse whole tree

- (5] ATS_CppTestingPrj_1
Constructor

add_Test1
testANOT
~ [testAAND

18

2.3. Modifying a test

Clicking on test (tree item) shows a new window, that allows user to
specify values for input arguments of methods/functions as well as expected

return values (Figure 27).

Figure 27. Main View of ATS5 with added tests.

CPlests | Code Generator

oog

vi

>

G Glpil ko S

AMMEB B

TS,

Application allows user to input only parameters that are used in a specific
method/function. For example, for switchCaseFunction method, which returns
integer and its parameters could be also only integer numbers, there will be error

(marked as red background), if user tries to input other data types (Figure 28).

Figure 28. Setting wrong data type for a test parameter

ATS_CppTestingPrj : switchCaseFunction : switchCaseFunction_Test1

Hame Type 51 52 53 54
= Input arguments
a int [1,10]
5 inc Y ——
c int 4
= Expected return value
int o o
~ Global Variables
= Input
globalVariable2 long 234132
~ Expected value
globalVariable ¥ |double 0.03

AVEIS S olobalVariable
InjglobalVariablez
Ex)globalVariable3

19

Global variables can be added by selecting them from the expanding list

(Figure above). You can select many different global variables in single test but

once used global variable in input argument or expected value cannot be

duplicated.

To use a user variable, firstly you need to create it in the view of class

definition or while having selected any method/test of the class which you would

like to create user variable for. By default, user variables creation section is

located on the right side of ATS application just under Test Description (Figure

29). It is a docking widget so you can always undock this and place anywhere

else to let it be more comfortable to use.

Figure 29. Add user variable section

Global Variables

pe
int
long
double
float
const char *

(@)
MName

glokbalVariable2
globalVariable3
globalVariables
globalek

ATS CppTestingPFrj globalClassl
ATS CppTestingPrj_1 glokballlass2

int *
A Srvnlturs

i

User Yariables

MName Type
varint int
varlntPtr int*

pointerInteger

1l ams] Srriat

())

Value
5
new int(1)

b structSample StrukturaStr (int, std:string, unsign... {varlnt,"sample®,
i int

| Globkal variable with name globalVariable already exists.

i

Test Description

(@))

This is sample description for method switchCaseFunction()

Test Requirements

Test Description

Press plus ,,+” button to create new user variable and specify name, type

and value for it, then push Enter to confirm your inputs. Removing already

20

created user variable is done after you select it from the list and then click minus
,»- button. In case you create user variable with same name as already existing
global variable, application will recognize it as error and mark such variable on

red background.

When defining structure types for user variables, it is possible to select
which constructor should be used — it can be selected via combobox list. All
default constructors without parameters are named same as structure name
(without arguments in parenthesis) and all custom constructors with different

arguments are listed as well:

Figure 30. User variable structures constructor selection.

User Variables [=
MNarme Type Value
varlnt int 5
varlntPtr int* new int{1)
= structSample StrukturaStr (int, stdustring, unsign... fvarint,"sample® 2334432 { 3]}
X int varlnt
b stdustring "sample”
te unsigned long long 2334432
b on nestedStructTwoDeepth (testStruct... {3}
=TT 275 CooTestingPri -

ATS_CppTestingPrj
ATS_CppTestingPrj_1

Class1
ATS_ClassDisabledConstructar
ATS_String

ATS_StructPointer
ATSTESTCLANG

testStruct (int, int)

testStruct
Userstruct (int, float) festStruct {int, |nt]|

If some parametrized constructor was selected, user is able to define values
for structure fields — those values will be then automatically placed in the main

node of structure inside {} brackets.

Defining class objects variables is also done via selection in above
combobox element — user has to simply choose which class type should be used
for specific variable. For both structure and class objects variables it is allowed

to use pointers by changing selected type using “*” character at the end of the

21

expression. SimuDIl needs to be rebuilt to allow usage of such created user
variables and to allow you to select them from combobox placed in the test

definition section (Figure 31).

Figure 31. User variables usage in test

Global Variables =069
ATS_CppTestingPrj : switchCaseFunction : switchCaseFunction_Test2 Sequence Length | 1
Name Type s1 Type
~ Input it
long
double
flcat
const char *
ATS_CopTestingFri
ATS_CppTestingPri_1
int *

R - ;

User Variables (=]

Name Type Value
varint int 5
varlntPtr int new int{1}

¥ structSample StrukturaSir (int, std:string, unsign... {varint,"sample”,2334432,(,3}}
testStr ATS_CppTestingPrj

Similarly to global variables, you can use multiple user variables in single

test, but they cannot be duplicated.

In tests, where a parameter can be a reference (e.g. int &), application

allows you to use only user (local) variables or global variables (Figure 32).

Figure 32. Reference to global variable in test’s parameter

Class\WithRefsToPrimitives : refTolnt 2 refTolnt_Testl

Hame Type Sequence Value
v Input arguments
ref int & globalVariable
* Expected return value
int 4
| Globsl Variables B
Type MName Walue =
int globalVariable 5
2

long globalVariable?2

If you declare user variable as a pointer, for example in this way: (type)

int* (name) ptr (value) nullptr, it can be then used in test’s parameters like this:

Figure 33. User variable as a pointer used in test’s parameter

ATS_CppTestingPrj : add : add_Testl

Hame Type Sequence Value
v Input arguments

a int & *myIntPtr

b int 2

= int 3

* Expected return value
int 4

22

There is also a possibility to use pointers in arguments that are not using
references. For example, you can define user variable as a pointer to integer and
then use it as a parameter in argument of int type — simply use *userVar or
userVar[0].

On the other hand, if you want to set value or set expected value of user
variable which is pointer type, you can only do that by typing ,,*” before

variable’s name or array index after name like ptrVar[0] (Figure 34).

Figure 34. Setting or getting pointer user variable

——————— - ————

v User Variables

v Input

ptrlo] int* 1
v Expected value

ptr int 1

2.3.1. Sequences

A particular test can be run in sequences. To add new sequence, click the
,,+”” button on the right side of the fields with test params (Figure 35). Also, you

can modify the amount of sequences by putting its length number in the textfield.

Figure 35. Test sequences

ATS_CppTestingPrj : switchCaseFunction : switchCassFunction_Tests Sequence Length | 4 i s
Hame Type 51 52 53 54

a int 2

b int 421 34

= int 33

~ Expected return value
int
* Global Variables
* Input

globalVariable int &
* Expected value
globalVariable int 7
~ User Variables
~ Input
* uu Struktura {4,3,2,nullpcr} {,,,} doool looo
x int 4
b float 3
te unsigned long.. 2
nest nestedStruct * nullptr
v Expected value
* uu Struktura {1,2,3,*} dpooll Hoool {ree
x int 1
b float
te unsigned long.. 3

nest nestedStruct * *

Each column ,,S1”, ,,S2” and so on, is a separated sequence. So for first

sequence of this test for input arguments were provided values: 2, 421, 33 and for

23

expected return value 22. Due to empty cells in second sequence, all values from
previous sequence (S1) will be extended also to second sequence. It means that
values for second sequence are exactly the same as for S1. You can notice that
value for b parameter has changed in third sequence to 34. So all other empty
cells will automatically expand values from previous sequence besides value for
b parameter. About expected return value, in above case it will always be equal

to 22 in each sequence.

To sum it up, if you do not define parameters in the following sequences,
they will be automatically set as values of earlier defined parameters. Sequences

work the same also for global and user variables.

In test, you can also add description, which will be displayed in generated
reports (Figure 36).

Figure 36. Test description

Test Description [=]ES

This is test description.

User Varizbles Test Description

Global Variables [=]ES

Type Mame
int globalVariab
long globalVariab
double globalVariab

v v Vv wvwvwow

float

const char *
Struktura
StrukturaDwa
StrukturasStr
Tabs
UserStruct
nestedStruct

globalVariab
globalek
globalStruct
globalStruct
globalsStr2
globalTabs
globalUserSt
globalNested

nestedStructTwoDeepth globalNested_

3

By default, this section is placed on the right side of ATS application under

Global Variables section, but it is a dockable widget so you can always dock it

anywhere else.

24

2.3.2. Range values

ATS5 allows users to create tests with range values in parameters. Range
Is specified as [min, max, step]. To use a range, you have to put your values
between square brackets ,,[” and ,,]”, with comas as separator for min and max
value and a step (which is optional, by default it will be set to 1). Ranges are
presented on Figure 34. Important information about ranges is that they differ for
return values. In such case, you can only specify [min, max] params (without
step). It means that return values specified in a range (e.g. [1,50]), will take every
value from that range as positively passed in a test (see expected return value in

sequence S2 of below example).

Figure 37. Ranges in tests’ parameters

ATS CppTestingPrj : switchCaseFunction : switchCaseFunction_Testd

Hame Type 51 52
* Input arguments

2 int 66 3

I int [1,5,1] 3

c int 2 4

» Expected return value
int <100 [1,50]

Another example — range specified as [5,10,2] will run test with given
values 5, 7, 9 — so there will be created 3 sequences additionally for purpose of
this range. If user will provide two ranges in separated parameters within single
sequence, application will combine them, using Cartesian product operation. It is
also possible to have range with a negative step. This requires putting a bigger
value as a minimum parameter than maximum parameter (e.g. [15, 2, -3] or [-5,
-1, 1]). As shown on Figure 34, after execution of this test, its result will passed
(the received return value is 2 for S1 and 4 for S2, so it passes both conditions).

2.3.3. Special operators

Moreover, application allows you to use special operators for specifying

return value. Those operators are:

25

o <" -values less than;

e > -values bigger than;

e .<="-values less and equal to;

e ,>="-values bigger and equal to;

. ,,I”-negation (it means that user can expect every value except the ones
given in return range if exclamation mark was added);

e *” -all values are correct.

Figure 38. Special operators in ranges

ATS CppTestingPrj : switchCassFunction : switchCaseFunction_Test10

Sequence Length

Hame Type 51 52 53 54
v Input arguments

a int 3 3

b int 4 -2 [-3,10,3]

& int =g [1,10,2]
v Expected return wvalue

int 0g =0 <=82

Usage of these special operators is presented on Figure 38. It is not allowed
to use those operators for input arguments, but for all expected return values (also
for global and user variables) it is completely correct.

2.3.4. Structures usage in tests

It is possible to use structures within tests and to define user variables of

such type. In ATS5 this test will be displayed and handled a little bit different
than regular test with primitive types (Figure 39).

Figure 39. Empty struct fields

ATS_CppTestingPrj : structFun : structFun_Testl

Hame Type 51
* Input arguments
a int
- b Struktura
x int
b float

te unsigned long..
nest nestedStruct *
* Expected return value

woid

As you can see, the general row of such structure shows what type is this,

and after filling out the values in the below cells, this general row will be updated

26

in real-time inside curly brackets {} with each value separated by a comma
(Figure 40).

Figure 40. Struct usage in test

ATS_CppTestingPrj : structFun : structFun_Testl

Hame Type 51
~ Input arguments
a int 3
- b Strukcura

b4 int 3
b float 21.3
te unsigned long long 53
nest nestedStruct * nullptr

v Expected return value
wvoid

Mmoo mrooro_w o

There are some rules to follow while defining values of struct fields in a
test. Firstly, it is forbidden to use ranges as input arguments of struct — it is only
possible to use range as expected return value. When a test contains global
variable of struct type, it is forbidden to define its field with usage of user variable
as its value. But on the other hand, if user variable is used in a test and it is a struct

type, it is possible to use global variable as its value (Figure 41).

Figure 41. Struct examples in test

ATS_CppTestingPrj : structFun : structFun_Testi

Hame Type 51
a int 3
* b Struktura {3,21.3,53, nullptr}
x int 3
b float 21.3
te unsigned long long 53
nest nestedStruact * nullptr
+ Expected return value
void
* Global Variables
* Input
* globalUserStruct UserStruct {5,0.5}
b4 int 5
b float 0.5
* Expected wvalue
* globalNestedStruct nestedStruct {{'h"},34}
¥ nestnest nestedStructTwoD.. {'h"}
b4 char 'h'
b4 int 34
* User Variables
* TInput
* un Struktura {4,5,44,nullptr}
b4 int 4
b float &
te unsigned long long 44
nest nestedStruct * nullptr
* Expected walus
* WW Struktura {31,2,2,globalNestedStructPtr}
b4 int 31
b float 2
te unsigned long long 2
nest nestedStruct * globalNestedStructPtr

27

Additionally, user can set a value for current structure using option from

context menu ,,Set variable” (Figure 42).

Figure 42. Set struct variable

ATS_CppTestingPrj : structFun : structFun_Testl Sequ
Hame Type 51
* Input arguments
a int 3
-5 scrukcura . -
x int _ Expand until non-empty sequence
b float - Expand all empty sequences
te unsigned long.. -
nest nestedScruct ¢ - Expand and replace all sequences
* Expected return value Copy
veld Paste
¥ Global Variables
+ Input Set Variable
* globalUserStruct UserStruct globalUserStruct Restore default value
x int -
b float =
* Expected wvalue
+ globalNestedStruct nestedStruct {{'h'}, 34}
~ nestnest nestedStructT.. {'h'}
x char 'h'
x int 34

Set variable option will open a new dialog with list of all global and user

variables of the same type as currently selected struct (Figure 43).

Figure 43. Set Variable for struct

& Select variable

ryStructDefault
myStructParams
structPtr{0]

Set index for pointer Ok Cancel

In case of pointers, it is possible to set an index. When variable is selected
and confirmed, the fields with values cannot be modified (Figure 42) — they
contain ,,-“ symbol. The only option to change it, is to restore the value by

selecting option from context menu ,,Restore default value”.

28

2.3.5. Class objects usage in tests

As it was mentioned before, it is possible to use class objects in tests — as

well as global or user variables (see Figure below) or input arguments/expected
return values in tests as well as class pointers.

Figure 44. Class objects usage in tests

ATS_CinTests : firstinCin : firstinCin_Test2

Sequence Length | 3
Name 52
Input arguments

Expected return value

char 'h'
-~ Glokbal Variables
Input
Expected wvalue
~ User Variables
~ Input
classType AT5 CinTests classTypePtr([0] classType
Expected wvalue
classTypePtr ATS5_CinTests* nullptr

To set argument as class object, it is required to use “Set variable” option

from right-click context menu opened on specific cell in sequence column.

2.3.6. Functions mocking

Mocking functionality is placed under a mock widget button placed in the

toolbar: ==

In this window there are listed all mock functions recognized from testing
project — in the parenthesis are defined classes which those mock functions are

involved in, and on the left side of the parenthesis is written the name of function
or method that mocked function is changed in:

29

Figure 45. Mock functions widget.

@ Mock functions -] K
Enabled ™| |0 int toMock (woid)

Mock function | testt v ; ! return

Method (Class) nestedAlsoHere (ATSTESTCLANG)

Method (Class) nestShouldBeHere (ATSTESTCLANG)

Mack function |toMock ¥

Method (Class) function (ATSTESTCLANG)

Mack function | setFlag_1
Method (Class) medcTest (Mcdc)
Mock function | setFlag_2
Method (Class) mecdeTest (Medc)
Mock function | setFlag_3
Method (Class) medcTest (Medc)
Mock function | setFlag_4
Method (Class) medcTest (Medc)

Mock function | setFlag_5

Add includes Save changes Discard

To use such mock function, user needs to accept the checkbox in column
“Enabled”. If function is not a void type, specify the appropriate return type in
code editor placed on right side after clicking on specific mock function. After
user has defined all mock functions, it is required to click “Save changes” to apply
this code edits. To run tests with mock functions usage, SimuDLL has to be
rebuilt first.

If mock functions use some components from additional sources or
libraries, it is allowed to add includes which will exist in a file where mocked
functions are defined, by clicking on “Add include” button — then new window
will be displayed (Figure 46).

Figure 46. Additional includes for mock functions.

& ATSS -] X & ATSS - a X

#include |<math.h>| Zinclude

Finclude <math.h>

+ Save oK Save oK

30

To add new include, type in the component and confirm with “+” button —
it will be then append to the list. Click “Save” to confirm the action and “OK” to
quit.

Below is an example of behavior for mocked function and created test —
originally it is supposed to return “1” value:

Figure 47. Original method definition before mocking.

ATSTESTCLANG : toMock : ATSTESTCLANG.h

51 int toMock()
52 {
53 return 1;
54 }

but according to enabled toMock() function, the output will be different (see
Figure 49).

Figure 48. Example of mocked method.

ATSTESTCLANG : function : function Test] @ Mack functions -~ o %
Name Type s1
Input arguments Enabled = |0 int toMeck (void)
= 19
~ Expected return value Mock function testt v - -
int o < retarn
crobaTgianrabies Methad (Class) nestedAlsoHere (ATSTESTCLANG)
Input
Expecredpuatue Methad (Class) nestShouldBeHere (ATSTESTCLANG)
~ User Variables
Taput Mack function |toMock %
Expected value
Method (Class) | function (ATSTESTCLANG)

Mock function | setFlag_1
Method (Class) mcdcTest (Mcdc)
Mock function | setFlag_2
Method (Class) micdcTest (Mcdc]
Mock function | setFlag_3
Method (Class) medcTest (Mcdc)
Mock function | setFlag_4
Method (Class) mcdcTest (Mcdc)

Mock function | setFlag_§

Add includes Save changes Discard

The test output is “99” value instead of “1”:

Figure 49. Mock function result from test report.

Sequence step
Category Type Name
1
Expected return int - 0
Value returned int - 99

31

2.4. Running tests

After filling in all params that you need for your tests, now you can run

them. To start one selected test — click the button in Toolbar: ?[:

If your mouse’s focus will be set to class or adapter, clicking Run Selected
Test will cause running all tests from the selected class/adapter. Running selected
test is also possible using context menu, after right-clicking tree item in the Stubs
Viewer. If you would like to run all created tests, simply use button E>

or again — use a context menu.

To select many tests from different classes and to make them execute, user

can select particular checkboxes and then use the button to run them:

b
There is also a possibility to execute all created tests with automatic mode

from command line. To have it done, open a command line from the folder with

ATS5.exe file. Then, type in the following instructions (Fig. 50):
ATS5.exe -i PATH

PATH is a path to your created .ats5prj file which includes tests, that user want
to execute. After running above command, ATS5 automatically generates HTML

reports for done tests.

Figure 50. Automatic mode for running tests

SP\Desktop\newll.ats5prjg

After running tests with methods described above, an informational dialog
will appear. It includes such information as: numbers of tests done correctly and
incorrectly, name of executed test, status of the test result (Passed/Failed), time

In which the test was performed. In case that some test is not executable (for

32

example due to incorrect data types in params), this dialog will also include that
information. Also, status of executed test is shown in column ,,Result” in the
Stubs Viewer tree.

A view with the results of executed tests could be different — it depends on
configurations that were set in Tools. Settings concerning generating reports can

be checked in Tools — Configuration — Reports (Figure 51).

Figure 51. Reports Tools

Configuration - Reports x
o find Reports
Application Fold
General
Compilation tools Reports path i
Appearance
Company
Cs+ Project Image sub-fold
Project
Database
CTC
T
Requirement its Don't shaw again "Do you want open generated report?” Auto-generation after executing tests
Code Generator
Charts

Chart width [px] 1200 |+

Chartheight[px] |72 |+

Floating numbers
Precision type

Auto Setmanual Iy

Set precision 6

Type of saving photos to the report
®) only base64 anly image files use bases4 and save image to file
Type chart render

only separated charts) only summary chart al

sequence table type

) auto wvertical horizoni tal

Struct of page (with the possibility to turn on { off)
V| Table of content

V| Images
V| CodeArea
V| Sequences

V| Code Coverage

Save configuration Cancel

In here, you can choose paths for reports, as well as for other images, and
establish where they should be stored. By using checkboxes you can decide
whether to auto-generate a report after every test execution or not. There is plenty
of settings to choose, that will allow you to individualize ATS5.

33

If you would like to always show charts after test execution, you will find

that option in a tab, called View. There is a checkbox ,,Enable charts”.

Figure 52. View tab

File Simulation Code Coverage Tools Help

CFP Tests T - @ Show/Hide Leg output I
nmm Enable charts
ol l.l a)
[,:‘: (d_;_j DLL T'@ E [Clear Log Alt+Shift+C
Stubs viewer @ Restore view e

After setting this on, every executed test will automatically show charts

with results.

It is possible to disable specific classes or global functions from tests
execution — to do that, right-click on selected stub node (class or global function)
in Stubs viewer and select option “Disable class” or “Disable global function” —
it will make this element greyed out in the tree and all tests created for this stub
will not be executed, neither they will be added to test report. If there are already
some executed tests with results, all data will remain visible in the tree after this

class was disabled.

Figure 53. Disabled class in stubs viewer.

Stubs viewer =

MName Result =
' ATS CppTestingPrj

Enable this class |

ElE=

- (G Class1
Constructor
Destructor
- returnClass
returnClass_Test1
- returnClassPtr
returnClassPtr_Test1
- ATS_ClassDisabledConstructor
Constructor
Destructor
- [&] add
add_Test1
- [&] add2
add2_Test1

To restore elements again, just right-click on this stub in the tree and press

“Enable this class/global function”.

34

2.4.1. Charts

Charts are presenting test’s results — they can be very simple or pretty
complicated, depending on given parameters value and number of sequences.
Charts consist of input arguments, expected return values for variables and actual

received return values.

Figure 54. Charts section

o
5 33 ap

retbxp

In the middle part of the Charts widget, you can find generated chart, tools
for manipulating the chart and buttons for exporting the results. On the right side
of it, there is a table with parameters’ values. These values will be changing in
real-time when your mouse will be hovering points on the chart.

The display tools consist of a button for resetting the view and three
checkboxes to turn on/off displaying cursor, errors and axis on the chart.

The following two sections concerning axis X and axis Y include tools for
changing the scale of displayed chart — you can zoom it in or zoom it out. Also,
there is a slider for moving the graph to right or left (for X axis) and to up and
down (for Y axis). Moving the chart is also possible without the toolbar - in such
case user has to click and hold on the chart and then move the mouse in any
direction. In addition, zooming in and out the chart is allowed by using mouse
wheel (axis X) and using mouse wheel while holding SHIFT (axis Y).

Furthermore, in the section called File, there are three buttons for exporting.
The first one is used to generate PNG file with the displayed chart, the second
one is used to export the results to CSV file, and the same happens, when user
clicks the last button, with the only difference that the file with results will be in
a format of JSON.

35

2.4.2. MC/DC coverage

As it was mentioned before, settings concerning CTC options can be
defined in Tools — CTC, but there are also some other important decisions to make,
when you would like to generate test report with MC/DC (Modified
Condition/Decision Coverage) coverage included. Those decisions can be made

in Tools — Project section (see Figure 55).

Figure 55. Project configuration with CTC options

&

Project

* Application
| Sclution to test 1

Compilation toels

Company Project to test 1

b Testing project configuration

C1c

Reports @) Relezze Debug
Requi

Code G

SimuDlk4 path C:\Users\Tests\Desktop\MCDCTests Suggest

Project trez

/| Keep SimuDll connected

+/ | Show CTC wamning before tests

Save configuration Cancel

The checkboxes in the bottom of the dialog allow you to decide whether
you would like to show CTC warning dialogs when executing tests and whether
you would like to keep connection with SimuDLL. The last one needs to be turned
off if user wants to generate CTC report, so if you would have this checkbox set
on and execute test, you will get a warning dialog about it.

To enable generating MC/DC report, go to Tools — CTC and select
,MC/DC coverage” in Code coverage report type. Furthermore, select which

36

type of report you would like to generate — TXT, XML or HTML report. Now, if

you save your configuration, you are ready to execute tests with MC/DC feature.

In the general overview (Figure 56), when CTC option is set on, there are

added some new features, such as:

e In the Stubs’ viewer (on the left side of the screen below in the yellow
frame) there is added a new column ,,Coverage” which displays the
percentage of code coverage. If it shows 100% it means that all lines of the
code have been tested.

e Coloring the lines (Fig. 57) — in the method’s definition on the right side
(yellow frame), the colors of the lines have different meanings.

Explanation of them will be given under this below figure.

Figure 56. Main ATS5 window with CTC feature

file Simulation Code Coverage View Tools Help
CPP Tests Code Generator
B O
O Sl B Slziy TE V] AL AR [Halis
T

Stubs viewer ATS_CppTestingPr] : medeTest2 : ATS._... @0

ATS_CppTestingPr] : medeTes2

int
Name Resul Cals Coverage * ATS_CppTestingPri::mcdcTe
= [} ATS_CppTestingPrj 12 [l24% st2(int int b, int c,
Constructor
Destructor
[add

mcdcTest2 164
public int d)

n type int 165 {

lassMethod lée if (a<bss b >c)
167

168 return b,

169]

170 }

ms unct.
[7 switchCaseFunct.
~ [switchCaseFunction2
[T switchCaseFunct.
medcTest - - -
~ [medeTestt 2 k%
[T test_toPassed
[T2 test_toFailed Failed
[T test_toPassed
[T test1_toFailed Failad
[T test2_toFailed Failed
medeTest2WithParenthes
medeTestd

E
Funct. Fail
.
F

3] oneCRinside

[E] fouroRbool

adduint = = =
~ [adgDouble 3 |

[test1 withoutMCDC Failed

Line which is marked:
e green — means that this line was used and executed during the test,
¢ yellow — means that there was MC/DC recognized in this line,
e red — means that this line of code has not been executed and used during
the test (the conditions were false, so the program did not go inside the

lines).

37

Figure 57. Lines' colors in method definition
ATS_CppTestingPrj : switchCaseFunction2 ; ATS_CppTestingPrj.cpp B

int ATS CppTestingPrj::switchCaseFunction2 (int
a, int b)
B4 {

83

85 if{a » b) {

86 if(b == 3)

87 {

88 return 3;
89 13

90 else

91 {

92 return 5;
93 I3

94 } else/*test*/ if(a <« b && a == 3)
95 {

96 if(a == 3)

97 {

98 return 3; }
99 else

100 { return 5;
101 13

102 }

103 else

104 {

105 if(b = 7)
106 {

107 if(b == 3)

1nA !

To open MC/DC details dialog, click the yellow line’s number (it is
underscored) in method’s definition. It has 3 main sections (Figure 58) — on the
top of the MC/DC dialog there is located analyzed condition from already
executed test. Then, there is a table with all the conditions listed and their actual
amount of execution — so value ‘5’ in the first row of True column means that
this condition was obtained 5 times and of course was successful (the result of
True && True is always True). In the second row you can see that this condition

was obtained and executed only once, and its result is False.

Underscore (“_") in the ,,Condition” column means any boolean value

(True/False) as this value will not affect the result anyway.

The last section of this dialog is the description. It shows if the current
condition (leaf-level Boolean expression) is independent from other conditions’
results. The independence of a condition concerns that only one condition
changes at a time. The symbol plus (“+”) or minus (“-*) placed between

conditions’ numbers in the description, indicates which pair of conditions were

38

achieved (plus) and which were not (minus). If there is at least one pair with plus,
it means MC/DC was fulfilled.

Figure 58. Example of MC/DC dialog — plus symbols.

@ MC/DC Mcde.cpp:33 - O x

ifla<b&&b=c)

True False Condition
1(1 (] T && T

2|8 1 T && F

3@ 8 F &6 _

Description Pairs
MC/DCicond 1): | 1+3
MC/DC (cond 2): | 1+2

Interpretation for above example can be: to check the condition’s
independence, there needs to be executed a pair of condition 1 (True AND True)
and 3 (False AND), and also a pair of 1 and 2 — and they all have already been

achieved. In other words:

e The first condition (T && T) and the third condition (F &&) demonstrate
that ‘a <b’ can independently affect the outcome decision.
e The first condition (T && T) and the second condition (T && F)

demonstrate that ‘b > ¢’ can independently affect the outcome decision.

Let’s have a look at opposite situation with minuses (Figure 59).

39

Figure 59. Example of MC/DC dialog — minus symbols..

MC/DC Mcdc.cpp:62 - O *
if(@a]l(b&kc))

True False Condition =
1|1 2] Tl (_ k&)
2|11 a F || (T && T}
38 a F || (T && F)
4@ e F |l (F &)

Description Pairs
MC/DC (cond 1):
MC/DC (cond 2):

MC/DC (cond 3): | 2-3

Example description interpretation for above is — to check independence of

the condition there is a need to execute:

e The first condition (T || (_ && _)) and the third condition (F || (T && F))
or the first condition and the fourth condition (F || (F &&)). They all
demonstrate that ‘a’ (from analyzed expression) can independently affect
the outcome decision.

e The second condition (F || (T && T)) and the fourth condition (F || (F &&
). They all demonstrate that ‘b’ (from analyzed expression) can
independently affect the outcome decision.

e The second condition (F || (T && T)) and the third condition (F || (T &&
F)). They all demonstrate that ‘c’ (from analyzed expression) can

independently affect the outcome decision.

40

2.5. Importing/exporting tests

Application allows you to import ready tests (in a format of .JSON files)
to the project. It can be done by right-clicking a class or method in Stubs viewer
and selecting the option ,,Import method tests™/ ,,Import tests for the whole tree”.
Other way to import tests is to select a button ,,...”, that is placed next to Sequence

Length in tests parameters field or in class/method definition.

Figure 60. Importing/exporting buttons in class definition.

Code Generstor

% it ke Sy T V] AL A &

Stubs viewer

,,,,,
NNNNN

W

add_Testt
240918083054

Exporting tests is equally simple — you can find this option in context menu
of tree items or — after selected a specific test — export it via button, placed next
to Sequence Length. As you can see, application allows you to export tests as
CSV and also as JSON files.

Figure 61. Importing/exporting buttons in tests’ parameters section.

8L e TVIAMME B e

add_Test1
24.09.18 083054

] add_Test11

The difference between importing/exporting files in format of JSON or
CSV, is that while using .JSON files, the test is imported as a new test, and
exported test is also exported as a whole element. Importing by CSV file will
cause loading only tests’ values, and exporting as CSV file will save only tests’

values.

41

2.6. Modifying SimuDLL project

In case there will appear any error during SimuDLL project compilation,
user can open SimuDLL project via ATS application by clicking Simulation menu,
then ,,Open SimuDLL project in Visual Studio”. After that, .vcxproj file

containing SimuDLL will be opened.

Figure 62. Simulation — Open SimuDLL in VS.

& C:/Users/KSP/Desktop/TestCharts.ats3prj™

File Code Coverage View Tools Help
CPi uq Open SimuDll project in Visual Studio

piL Build Simulil
,‘ &Y Force SimuExe close A A

Stubs O Disconnect from server

Proper SimuDLL project configuration looks like this:

Figure 63. SimuDLL Configuration.

4 Configuration Properties ~ General Properties

General Output Directory $(SolutionDir) Bin\$(ProjectName)\$(Configuration)\
Advanced Intermediate Directory $(SolutionDir) Build\$ (ProjectName)\$ (Configuration)\
Debugging Target Name $(ProjectName)
VC++ Directories Configuration Type Dynamic Library (.dIl)

P C/CH+ Windows SDK Version 10.0 (latest installed version)

b Linker Visual Studio 2022 (v143)

I Manifest Tool C++ Language Standard 1SO C+ +17 Standard (/std:c++17)

B XML Document Generator C Language Standard Default (Legacy MSVC)

I> Browse Information
I> Build Events
> Custom Build Step

Most important is to specify ,,Platform Toolset” to ,,Visual Studio 2022
(v143)”. Otherwise, there may appear errors during compilation. One of the
common errors that appear (if ,,Platform Toolset” is not specified) is that our
application cannot find included system headers in files that we are trying to

analyse.

42

Chapter 3. Additional features of CPP Tests

Besides main features that were described before, ATS5 has some other
functionalities. On the Figure 64 there are buttons marked in red, yellow, green

and blue.

Figure 64. Toolbar additional features

CPP Tests Code Generator
®: Sy ke Sy °F toje

Button in blue frame concerns refreshing project files. It will work, if the

application finds any changes in files, that user is currently using in a project (in .h
or .cpp files). After clicking the button, if there had been any changes made to the
files, the application will update them, remaining all the created tests by user.
Buttons in red area are related to increasing/decreasing font size for
constructor and destructor methods’ definitions.
Buttons in yellow frame concern generating CTC and ATS reports.
Button in green frame concern adding new test for selected method/global

function.

In case of a problem with executing tests, you can force SimuDLL to close.

To do that, go to Simulation — Force SimuExe close (Figure 65).

Figure 65. Force SimuExe close

& C/Users/KSP/Desktop/TestCharts.atsSpri*

File Code Coverage View Tools Help

CPF ’4 Open SimuDll project in Visual Studio
— pil Build SimuDll
,4 E}E Force SimuExe close

Stubs O Disconnect from server

Additionally, in Tools tab, you can find an option called ,,Load original

source”. It is used for restoring imported file to its original version — without any

43

added tests, variables or snapshots. Snapshots are used to make shots of a test,

which cannot be modified but they can be used to restore its values.

Figure 66. Tools tab

Dv/projects/ats5/ATS5_DemoProject/ATS5_DemoProjectats5prj*

File Simulation Code Coverage View Q[LIH Help

w Load original source
Eﬂ Configuration
ﬁ License tool

CPP Tests Code Generator

: &)oi Ee &

e

3.1. ATS Reports

Those reports are generated as HTML file. They include Table of contents
in the top of the page, then the titles of classes that contain done tests, names of
the methods with their test results and their definition titled as Function Code.

Optionally there could be included comments section. In the middle and
the bottom of the page there is a chart with a legend of params, and below that

the report includes a table with the values.

Figure 67. Report example.

B NS

Automation & Testing Suite
oc 1 AUTOS: .

All_2024.07.16

Table of contents

ATS_CppTestingPrj

switchCaseFunction

switchCaseFunction_Test1

Result: Failed

zzzzz

a1t
& ISEI T U AL CUEU L UL

44

Chapter 4. Code Generator

Code Generator is a functionality that allows you to load JavaScript files,
modify them, create new one, and then use them to generate dynamic code

between customizable tags in .hpp, .cpp and .h files.

Figure 68. Code Generator basic button

File Simulation Code Coverage View Tools Help

CPP Tests Code Generator
Be) ()
In Code Generator tab, there are 3 basic buttons. The first on the left is used

to run all JS scripts, loaded to a project. The second in the middle is used to save

single, selected script. And the last one saves all created or modified scripts.

4.1. Scripts Control

In this tab you are able to load existing JS scripts and open them in
application (Figure 69). To load scripts from your computer, click Add button. To
create new JavasScript script, select Create.

Figure 69. Buttons for Scripts Control

Scripts Control (&]

15 scripts

Files Cantral

Add Create Remove t L
Script

v
20V sampled.js

IV samnple2 Outside,js

4 writeToTextFilejs

Scripts Control

If you would like to remove loaded .js file from the Script list, select
checkbox near desired item and then click Remove button — please note, it will

remove all elements which have set checkboxes to true. All scripts on a list will

45

be executed in ascending order (from 1 to n). Down and up arrows buttons allow
you to place particular .js file lower or higher on a list, which will cause changes

In scripts execution order.

Besides removing actions, checkboxes are used also to enable or disable
which files from the list should be executed while running the scripts — if you do
not want some script to be executed but you want to save it on a list, simply

uncheck the box. In this case, it will not be executed.

The blue circle (Figure 70) placed near the name of a file means that this

file has been changed and stays unsaved. It will disappear after saving the script.

Going further, in the middle of the screen (Figure 70) there is a modifiable
field with JS code. You can add commands from Available commands list, which
Is placed on the right side — just click the line and area, where you would like to

have the command inserted and double-click the needed item from the list.

Figure 70. Scripts Control view in Code Generator

CPP Tests Code Generator

R

Scripts Control =[]
SR ~ C:/users/Oliwia/Desktop/CodeGeneratorSamples/JsS/sample.js

IS scripts

Add Create Remove

Script
| e
2V samplezjs
3V | sample2Outside.js
4V writeToTextFile js

Scripts Contral | Files Contrel

al(jsCode)
ec(sCode)
nsertCodleltag, insertCode)
rseln

=
5
&

To sum up, by modifying JS files there is a possibility to interact with all

the selected files and generate code from custom templates (by tags).

4.2. Files Control

Files Control basic buttons are used for importing files to the project,
adding new, single files or removing the selected one (Figure 70). Files to import

can be selected from Visual Studio projects or added separately by user.

46

By using add button, you can add .h, .cpp or .hpp files to the project.

Remove button allows to delete checked files.

In the tree with imported files, you can find output path and a button .,...”

that allows you to manually specify an output path for JS methods (InsertCode,

ReplaceCode). When these methods will make any changes to the files, those

changes will be saved just in this output path. It is set by default to the path of the

imported file.

Yellow triangle with an exclamation mark inside informs about warning —

a file cannot be found.

Figure 71. Basic button in Files Control

Files Control

Files Caontrol

Input Path

- (& ATS_CPPProjectTes...
hd Header Files
ATS_ClassDi...
ATS_Classhi...
ATS_CPPTes...
ATS_CppTes..

V| h
v h

Scripts Control

SSAS S
ERIERIE

h

Import files

ATSTESTCL...

ClassWithR...

globalFun.h

hd Source Files

W | |o
L2
[

Lad

Y

Lad

I

ATS_ClassDi..
ATS_Classhi...
ATS CppTes...

ATSTESTCL...
main.cpp

dditicnal Files

Add Remaove

Output Path

ChUsers, Oliwia\Desktop\AT5_CPPPro..
Ch\Users\ Oliwia\DesktoptATS_CPPPro...
C:\Users\ Oliwia'\Desktop' ATS_CPPPro...
ChUsers, Oliwia\Desktop\AT5_CPPPro..
Ch\Users\ Oliwia\DesktoptATS_CPPPro...
ChUsers, Oliwia\Desktop\AT5_CPPPro..
Ch\Users\ Oliwiat\DesktoptATS_CPPPro..

ChUsers, Oliwia\Desktop\AT5_CPPPro..
Ch\Users\ Oliwia\DesktoptATS_CPPPro...
ChUsers, Oliwia\Desktop\AT5_CPPPro..
Ch\Users\ Oliwiat\DesktoptATS_CPPPro..
Ch\Users\ Oliwia'\DesktoptATS_CPPPro...

=

Clicking Import files button opens new window with selecting VCXProj

file.

Figure 72. Selecting file to import in Files Control

Select VCXProj file

Path to Visual Studio project:

Cancel

47

By going ,,Next”, there is a window that allows you to choose files, that
you would like to include in a project (Figure 73) — you can select single elements
or whole folders. To include them, select the item and click the right arrow. It

will move the content of the selected item to the right side ,,included files”.

Figure 73. Selecting particular files to include in Files Control

&«

Select files to import them to ATS project

Files to indude: Induded files:
b ATS_ClassDisabledConstruct... e+ ATS ClassDisabledConstruct...
h | ATS_ClassDisabledConstruct... e ATS_ClassDisabledConstruct...
h| ATS_CPPTesting_Nested.h e ATS CppTestingPrj.cpp
h| ATS_CppTestingPrj.h e ATSTESTCLAMG.cpp
h| ATSTESTCLAMNG.h & main.cpp
b ClassWithRefsToPrimitives.h
h| globalFun.h

At the end of the importing process there should be displayed a window
with information that the importing was successful. Such imported files will be
displayed in a tree and selecting one of its items displays the code of the file in
the field on the left (Figure 74).

Figure 74. Files Control view in Code Generator

CPP Tests Code Generator
o) e
_ Files Control =165 = 5 n n = N
= C:\Users\Oliwia\Desktop\ATS CPPProjectTesting\ATS CPPProjectTesting\ATS ClassDisabledConstructor.h
é Import files Add Remove Bl spragma once
i
T InputPath Output Path e .
+ %] AT CPPProjectlesting ic{-lcbb ATS_ClassDisabledConstructor
B | -
z Header Files _ 5 public:
3 [ATS ClassDisa... CiUsers\OliwisDesktopiATs_CPP... [6 ATS ClassDisabledConstructor(int x);
g V| h| ATS ClassDisa.. C: ivia\ DesktophATS_CPP... | . 7 int add(int a, int b);
] V| 4. ATS_CPPTestin.. C iwia\Desktop\ATS_CPP... | .. 8 int add2(int a, int b):
V| [n| ATS CppTestin, iwia\Desktop\ATS_CPP... | .. s
¥ b ATSTESTCLAM... iwia\Desktop\ATS_CPP... | ... 10 int classVar;
V! n| ClassWithRefs... iwiz\Desktop\ATS_CPP... | ... i
V| [globalFunh CA\Users\Oliwia\Desktop\ATS_CPP... | ..
Source Files
Additional Fil

48

List of Figures

FIQUIE 1. LICENSE TOOIS.eeiiieiieiieieie ittt 3
Figure 2. WelComME WINAOWcuiiiiiiiiiiiiiisieeeee e 4
Figure 3. Main VIEW OF AT S5, ...ttt neenne e 5
Figure 4. Compilation TOOIS.ccuviiiiiei e 5
Figure 5. Importing fileS 0 CPP TESES........oiiiiiiiieieieiee e 6
Figure 6. REQUITEMENTS IS,c.oiiiiiiiiiee e 7
Figure 7. Requirements in ConfigUIation.ccccceiveiiiieieece e 7
Figure 8. Requirements Summary table............cccooooiiiiiiic i 8
Figure 9. Tools for adding/removing reqUIrEMENTS.ccoreriririnieienie s 8
Figure 10. Selection Section iN CPP TESHS.coiiiiiiieieie st 10
Figure 11. Main View of ATS5 with imported Project.ccccocvveveiieviiie e 10
Figure 12. Recent projects list in Welcome WINAOWccccvvevviieiieie e 11
Figure 13. Warning Box - Configure project pathsc.ccocviiiiiieiene e 11
Figure 14. Configuration - Configure project paths..........c.ccocviiiniiiiiiene e 12
Figure 15. Remove missing project in Welcome WINAOW.ccccevveviiieiieieece e 13
Figure 16. File — SAVe OPLIONS. ...cc.oceiiieiiecic ettt sre e ens 13
Figure 17. Configuration - Database.............ccoveieeiiiiieieece e 14
Figure 18. Configuration - Saving data to MongoDD. ... 14
Figure 19. Code COVErage tah. ... 15
FIGUIE 20. CTC TOOIS. ...vieiececeece ettt re et e et esreesre e e ens 15
Figure 21. Defining constructors with NON-Params.cccocvveveiiieieese e 16
Figure 22. Information while recognizing constructor with parameters............cc.ocoovvvveriennenn. 16
Figure 23. Create default constructurs fOr SETUCTUIES.cocoiiiiriiieieie e 16
Figure 24. Successfully built DLL notification.c.ccccveiiiiiiiiiicee e 17
Figure 25. Adding tests Via CONEXE MENU.ccvieirieiieeiie st 18
Figure 26. Additional options for test in StUDS VIEWETccoviiiiiiiiieeeee e 18
Figure 27. Main View of ATS5 with added testS.ccooiiiiiiiniiieee e 19
Figure 28. Setting wrong data type for a test parameter...........cccoccveveeiieeciie i 19
Figure 29. Add user variable SECHIONc.cccveiiiiiie et 20
Figure 30. User variable structures constructor SeleCtion.cccccevvervnieiieeseene e 21
Figure 31. User variables USage INtESEc.civeieerii i 22
Figure 32. Reference to global variable in test’s parametercccovevvviiiiiniinieisieniniennes 22

49

Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44,
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.
Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.

User variable as a pointer used in test’s parametercocvvvvveiiiveesiieesnneesnineennns 22
Setting or getting pointer user Variableccccovveiiiiiiiesece e 23
TESE SEQUEINCES ...ttt nn e 23
TESTAESCIIPLION ... bbbt 24
Ranges in tests’ PAramELerSiuiueiiiiieiiiie et srre s 25
Special OPErators IN FANQGESccveeveieeiieeieieeseeeese e e e e sreeste e sreesreeseesreesreaneesrens 26
EMPLY StrUCE FIEIUS. ... 26
SEFUCE USAGE TN TEST.....cueeietiieeete et 27
SErUCt eXamMPIES IN TEST......cviiiieeie e 27
Set StUCE VAriabIec.veieie i 28
Set Variable TOr STTUCT..........oiieece e 28
Class ODJECTS USAGE 1N TESTS.......eiiriieiieieie e 29
MOCK fUNCLIONS WIAQEL.ocveiieieciece e 30
Additional includes for mock fUNCLIONS. ..o 30
Original method definition before mocking.ccocooeieiininiie, 31
Example of mocked Method. ..o 31
Mock function result from test rePOrt...........ccevieiiiiie i, 31
Automatic mode for runNiNg teSLScveiieie i 32
REPOIS TOOIS. ...t 33
BTV - o SR 34
Disabled Class iN StUDS VIBWET.ccviiiiiieieie e 34
O g T (Y= o! 1T OSSR PP 35
Project configuration With CTC OpPtIONS.........cccoiiiiiiiiiirieee e, 36
Main ATS5 window With CTC featureccocerviieieeie e 37
Lines' colors in method definition ..o 38
Example of MC/DC dialog — plus symbolSs.........ccccccvvviiiiiiiiiic e 39
Example of MC/DC dialog — minus symbols..cccooviiiiiiinineeeee, 40
Importing/exporting buttons in class definition.ccoeviiiiiniieeen, 41
Importing/exporting buttons in tests’ parameters SECiON.ccvvververrereerveinennns 41
Simulation — Open SIMUDLL iN VS, ... 42
SIMUDLL ConfIQUIatioN.cooiiiiiieieie e 42
Toolbar additional TEATUIEScoviiiiieieieer e 43
FOrce SIMUEXE CIOSE ..o 43
TOOIS TAD et 44

50

Figure 67.
Figure 68.
Figure 609.
Figure 70.
Figure 71.
Figure 72.
Figure 73.
Figure 74.

REPOM EXAMPIE.c.iiiee ettt e re e ae e nres 44
Code Generator DaSiC DULIONcviiiirieieie e 45
Buttons for SCripts CONIOL...........coiiiiiiiiee e 45
Scripts Control view in Code GENEIAtOrcccviiriiieieieiese e 46
Basic button in Files CONtrol ..o 47
Selecting file to import in Files CoONtrol..........cccevveii i 47
Selecting particular files to include in Files Control..........ccccooviievinniieniiieenn 48
Files Control view in Code GENEIAtOr.........c.ceiieriiieiiere e 48

51

